《机械制造技术基础 A》教学大纲

课程名称: [0110241] 机械制造技术基础 A

课程类别(必修/选修): 必修

课程英文名称: Mechanism Manufacture Technology Basis A

总学时/周学时/学分: 48/4/3

其中实验/实践学时: 4

先修课程: 机械制图、理论力学、材料力学、机械原理、互换性与技术测量、工程材料及成型技术

后续课程支撑:现代机械设计方法、制造系统自动化技术、机电产品创新与实践、机器人技术及应用、非标自动化设备设计实践

授课时间: 1-12 周: 星期三 (1-2 节)、星期五 (1-2 节)

授课地点: 6B303

授课对象: 2018 级机械设计卓越 2 班

开课学院: 机械工程学院

任课教师姓名/职称: 冯树飞/讲师, 王建国/教授

答疑时间、地点与方式:

1. 每次上课的课前、课间和课后答疑; 2. 每次发放作业时,采用集中讲解方式; 3. 通过微信、电话、电子邮件等进行答疑

课程考核方式: 开卷() 闭卷(√) 课程论文() 其它()

使用教材:

黄健求主编.《机械制造技术基础》(第2版),机械工业出版社.

教学参考资料:

- (1) 刘英主编. 《机械制造技术基础》, 机械工业出版社, 最新版.
- (2) 于骏主编. 《机械制造技术基础》, 机械工业出版社, 最新版.

课程简介:

本课程是机械设计制造及其自动化专业学生的必修专业课程,主要介绍机械产品的生产过程及生产活动的组织;金属切削过程及其基本规律;机床、刀具、夹具的基本知识;机床夹具设计;机械加工工艺规程设计;机械加工精度及表面质量的概念及其控制方法;现代制造技术发展的前沿与趋势,使学生在机械制造技术方面掌握最基本的知识和技能。

课程教学目标	支撑毕业要求指标点	毕业要求
目标1 掌握金属切削过程的基本原理和规律,了解各类 机加工机床的类型、工艺特点和相应加工刀具, 能合理选用加工机床及刀具。	1.3 能够将机械工程相关知识和数学模型方法,用于推演、分析复杂机械工程问题。	1. 工程知识:掌握扎实的数学知识、物理、化学等自然科学知识,力学、电工电子学、计算机学、工程材料学等工程基础知识以及机械制图、机械原理、机械设计、机械传动与控制等专业知识,并将其用于解决机电产品设计、开发、制造、管理等过程中的复杂机械工程问题。
目标 2 掌握并能根据应用加工精度和表面质量影响规律、机床夹具的定位原理和定位误差计算、工艺路线拟订的原则及零件加工工艺规程编制的一般方法,能对机械零件进行工艺分析、加工工艺规程设计制订和相应机床夹具设计的能力。	2.4 能运用相关科学基本原理,借助文献研究,分析机电产品设计、开发、制造、管理等过程的影响因素,获得有效结论。	2 问题分析:能够应用数学、自然科学和工程科学的基本原理,识别、表达并通过文献研究分析机电产品设计、开发、制造、管理等过程中的复杂机械工程问题,以获得有效结论。

理论教学进程表

周次	教学主题	授课教师	学时 数	教学内容(重点、难点、课程思政融入点)	教学模式 (线上/混合 式/线下	教学方法	作业安排	支撑课 程目标
1	机械制造概论;	冯树飞	1	重点: 本课程的教学及学习方法,开设目的,研究对象和内容; 生产类型及工艺特征。 难点: 生产纲领的计算及生产类型的区分。	线下	讲授	课程思政作业 1:要求阅读 至少两篇与机	目标 1

				课程思政融入点: 介绍新中国成立以来在机械制造 领域所取得的成绩,培养学生的爱国情操。			械制造发展有 关的文章,理	
	金属切削基本概 念;刀具几何角 冯树飞 3 度。		3	重点:金属切削的基本概念、切削用量三要素及切屑层几何参数;刀具切削部分结构要素及角度定义。 难点:刀具几何角度的定义、组成、测量;切削层几何参数的计算。	线下	讲授	解加工制造对 国民经济的重 要性。	
2	金属切削过程中	冯树飞	2	重点: 切屑的形成过程及影响切削变形的因素; 切屑的种类、排屑及断屑措施; 切屑力的产生机理及影响规律。 难点: 变形的物理本质, 正确利用金属切削机理控制切削变形和切屑; 切削力的计算及控制。	线下	讲授		目标 1
2	的物理、力学现象	王建国	2	重点:切削力的影响规律、切削功率的计算;切削 热及切削温度的产生机理及影响规律;刀具磨损及 刀具使用寿命的基本概念及影响因素; 难点:切削力的影响因素及控制措施;刀具磨损及 刀具使用寿命的原因及控制措施。	线下	讲授		H 72N 1
3	材料的切削加工 性与切削条件的 合理选择	冯树飞	2	重点: 材料切削加工性的含义、指标及影响因素及改善途径; 切削加工条件(刀具几何参数、切削用量、切削液)对加工变形、力、热寿命等的作用规律及合理选择。		讲授/ 案例分 析	作业 1	目标 1
4	磨削与砂轮	冯树飞	2	重点:磨削力与磨削温度;砂轮的特性与选择。	线下	讲授		目标 1

	刀具类型、材料;			难点: 加工中如何正确选择砂轮的粒度和硬度。 重点: 刀具材料的基本特点及常用刀具材料的特点				
	车刀	冯树飞	2	及应用范围;车道的种类、结构形式及用途。 难点: 成形车刀的前、后角的形成。	线下	讲授		
5	铣刀、孔加工刀 具、螺纹刀具、拉 刀、齿轮加工刀具	冯树飞	3	重点:常用切削刀具种类、结构特点及用途;机床的运动及传动链、机床型号的含义;车床结构及用金。 线		讲授	作业 2	目标 1
	金属切削机床	冯树飞	1	重点 :机床的运动及传动链、机床型号的含义。 难点 :机床的表面成形运动分析;	线下	讲授		
6	金属切削机床 (铣、磨床、钻、 镗、齿轮加工机 床)	冯树飞	4	重点: 铣床、磨床、钻床、镗床、滚齿机工作、结构特点及用途。 难点: 展成法加工齿轮齿形原理; 机床的选用。 课程思政融入点: 结合实际案例,介绍我国制造业 发展现状,让学生领会"核心技术要掌握在自己手 里"的深刻内涵及来之不易,鼓励其沉心学习及工作。	线下	讲授/ 案例分 析	课程思政作业 2:结合本课程,要求学生每人阅读两篇与机械制造相关文章,了解广东或东莞制造业的现状。	目标 1
7	机床夹具设计原理	冯树飞	4	重点 : 夹具的功用、分类与组成; 夹具的定位原理、 方法及典型定位方式元件的特点和应用; 定位误差 的定义、分析及计算办法; 工件的夹紧装置的组成、	线下	讲授	作业 3	目标 2

8		冯树飞	2	要求及夹紧力的确定。 难点: 六点定位原理、定位误差的分析与计算; 夹紧力的确定 重点: 典型夹紧机构的特点及应用; 夹具的选用和设计。 难点: 夹具的选用及设计。	线下	讲授/ 案例分 析		
9	机械加工精度及 统计分析;已加工 表面质量及其影 响因素	冯树飞	4	重点:加工精度的概念及获得办法;原理误差、工艺系统几何误差及加工过程误差的类型、表现形式、影响机理及控制措施;加工误差的性质及统计分析;机械加工表面质量影响因素及控制途径。 难点:误差的识别及加工精度的统计分析方法。课程思政融入点:介绍加工精度对零件的重要性,深化对"工匠精神"的认识;对待学习与工作永不满足,培养学生追求极致的品质精神。	线下	讲授/ 案例分 析	作业 4 课程思政作业 3:结合本课程,要求学生每人至少阅读两篇与新时代的"工匠精神"有关的文章,理解工匠精神	目标 2
10			2	概念、质量影响因素及控制途径。 难点: 提高表面质量的的措施。				
10	机械加工工艺规	冯树飞	2	重点 :机械制造工艺过程的概念;机械加工工艺规程的作用、制定原则及步聚;零件结构工艺性的要	线下	讲授	作业 5	目标 2

	程的设计			求及设计准则;毛坯的选择依据及常见零件毛坯选择。 择。 难点: 加工基准的选择、工艺尺寸链计算及工艺路				
	_			线的制订。				
11		冯树飞	4	重点:零件定位基准、工艺路线等确定的原则及选择;工序尺寸链的基本概念、计算;提高机械加工生产率的工艺措施、工艺方案经济性分析办法;典型零件的加工工艺。 难点:加工基准的选择、工艺尺寸链计算及工艺路线的制订。	线下	讲授/ 案例分 析		目标 2
12	机器装配工艺	冯树飞	4	重点:机器装配概念、装配组织形式、产品结构装配工艺性。 难点: 装配尺寸链的计算。	线下	讲授/ 案例分 析		目标 2
	合计		44					
				实践教学进程表				
周次	实验项目名称	授课教师	学时	教学内容(重点、难点、课程思政融入点)	项目类型(验证/综合/设计)	**	数学 5式	支撑课程目 标
3	实验 1. 刀具几何角 度的刃磨与测量	徐素武	2	刀具几何角度的刃磨与测量 课程思政融入点: 要求学生实验过程中坚持实事求实、严谨的科学态度。	验证		、学生独立 完成实验	目标 1

8	实验 2. 夹具结构 拆装	徐素武	2	夹具的定位与夹紧机构分析	综合	教师演示, 学生独立 实践完成实验	目标 2
		合计:	4				

	课程考核											
)### 	支撑毕业要求指标		评价依据及成								
序号	课程目标	点	作业	实验	期中考试	期末考试	权重(%)					
1	目标 1	1.3	5	5	10	35	55					
2	目标 2	2.4	5	5	0	35	45					
	合计		10	10	10	70	100					

注: 各类考核评价的具体评分标准见《附录: 各类考核评分标准表》

大纲编写时间:

系(部)审查意见:

我系已对本课程教学大纲进行了审查,同意执行。

系(部)主任签名:

日期: 2021年2月27日

附录: 各类考核评分标准表

作业评分标准

观测点	评分标准							
200/13///	A (90–100)	B (80-89)	C (60-79)	D (0-59)				
基本概念掌握程度,解 决问题的方案正确性 (权重 0.7)	概念清楚,解题思路清晰,计算正确	概念比较清楚, 作业比较认真, 答题比较正确。	概念基本清楚, 答题基本正确。	概念不太清楚, 答题错误较多。				
作业完成态度 (权重 0.3)	按时完成,书写 工整、清晰,符 号、单位等按规 范要求执行	按时完成,书写清晰,主要符号、单位按照规 范执行	按时完成,书写 较为一般,部分 符号、单位按照 规范执行	未交作业或后 期补交,不能辨 识,符号、单位 等不按照规范 执行				

实验评分标准

观测点	评分标准						
77/NJ.TT	A (90–100)	B (80-89)	C (60–79)	D (0-59)			
实验操作 (权重 0.5)	操作规范,步骤合理清晰,在规定的时间完成实验	能按要求较 完整完成操 作,实验过 程安排较为 合理,间完成 定时 实验	基本能按要求 行 操 行 操 行 操 分步骤安排 不合理,时 成实验时 稍为滞后	操作不规范,实验 步骤不合理,未在 规定的时间内完成 实验			
实验报告 (权重 0.5)	按时完成,内容全面,字迹清晰、工整,计算、作图正确,对实验结果分析合理	按时完成, 内容基本完整, 整, 计算、 作图基本实验 结果分析基本合理	按时完成, 内容的 供证 的	未提交或后期补 交,内容不完整, 不能辨识,计算、 作图出现大部分错 误,未对实验结果 进行分析或分析基 本全部错误			

期中考试评分标准

按期中考试试卷参考答案及评分标准评分。

期末考试评分标准

按期末考试试卷参考答案及评分标准评分。