《 PLC 技术 》教学大纲

课程名称: PLC 技术 课程类别(必修/选修): 选修

课程英文名称: PLC Technology

总学时/周学时/学分: 24/2/1.5 其中实验/实践学时: 8

先修课程: 电工电子、C语言编程

后续课程支撑:制造系统自动化技术、数控技术、毕业设计

授课时间: 1-12 周每周二 7-8 节 授课地点: 7B-314

授课对象: 2020 材料控制 1 班、2020 材料控制 2 班

开课学院: 机械工程学院

任课教师姓名/职称: 张斐/讲师

答疑时间、地点与方式: 1. 每次上课的课前、课间和课后,在上课教室答疑; 2. 工作日的实验室 12N201 答疑

课程考核方式: 开卷()闭卷()小组答辩+课程论文(√)其它()

使用教材: 《电子控制与 PLC 项目化教程(三菱 FX 系列)》,侯秀丽 主编,哈尔滨工业大学出版社

教学参考资料:《PLC 基础及应用教程》,秦春斌,张继伟 主编,机械工业出版社

课程简介:

PLC 技术是机械工程专业的专业选修课。本课程主要学习电气控制的主要器件及控制方法,重点讲述三菱 FX2N 系列 PLC 的组成、原理、指令和编程方法,以及 PLC 控制系统的设计和维护方法,培养学生电气自动化控制的综合设计、编程与应用开发能力。

课程教学目标及对毕业要求指标点的支撑:

课程教学目标	支撑毕业要求指标点	毕业要求
目标 1:	1.4 能够将机械工程相关知识和数学模	1 工程知识: 掌握扎实的数学知识、物理、化学等
了解 PLC 技术发展历程、掌握 PLC 系统的构成、工作原	型方法用于复杂机械工程问题解决方	自然科学知识,力学、电工电子学、计算机学、工
理及编程方法;并能够将上述理论、方法用于机械工程中	案的比较与综合	程材料学等工程基础知识以及机械制图、机械原

的 PLC 系统解决方案的比较与综合		理、机械设计、机械传动与控制等专业知识,并将
		其用于解决机电产品设计、开发、制造、管理等过
		程中的复杂机械工程问题
目标 2:		4 研究: 能够基于科学原理并采用科学方法对机电
完成典型单机自动化控制的 PLC 系统实验设计,分析和解	4.3 能够对实验结果进行分析和解释,	产品设计、开发、制造、管理等过程中的复杂机械
释实验数据,并得出合理结论	并通过信息综合得到合理有效的结论	工程问题进行研究,包括实验设计、分析与数据解
		释,并通过信息综合得到合理有效的结论
目标 3:	5.2 能够选择与使用恰当的仪器、信息	5 使用现代工具: 能够针对机电产品设计、开发、
掌握三菱 FX 系列 PLC 的常用指令和 T 形图、SFC 三种编	资源、工程工具和专业模拟软件,对复	制造、管理等过程中的复杂机械工程问题,开发、
程方法; 学会典型单机自动化控制的 PLC 系统设计,并能	杂机械工程问题进行分析、计算与设计	选择与使用恰当的技术、资源、现代工程工具和信
进行软件编程调试	示例加风工性的燃炉17771、17异一以1	息技术工具,包括对复杂机械工程问题的预测与模
		拟,并能够理解其局限性

课程思政目标:通过课程的学习,培养学生的爱国精神以及团队合作能力,培养学生的全局观与辩证观,形成严谨的科学态度、实事求是的工作作风以及良好的职业素养。

理论教学进程表

周次	教学主题	授课教师	学时 数	教学内容(重点、难点、课程思政融入 点)	教学模式 (线上/线下	教学方法	作业安排	支撑课 程目标
1	电气控制系统基础	张斐	2	重点: 1、本课程概述; 2、PLC 基本概念、应用现状及发展趋势 3、电气控制系统的基本概念、应用及常 用电器元件;	线上教学	线上教学		目标1

				4、常用低压电器、继电器-接触器基本控制电路; 电气控制电路设计、电气设备装置的安装与调试; 难点 : 电气控制系统点动、连续运转、正反转、顺序控制、时间控制的基本原理。				
2	PLC 工作原理、组成及分类,PLC 技术持续发展与社会主义自主创新紧密联系	张斐	2	重点: 1、PLC 的概念、特点; PLC 的应用领域; 2、PLC 的产品类别、组成、工作原理、3、PLC 的国内外状况及发展; 难点: PLC 的产品类别、组成、工作原理课程思政融入点: 分析中华民族伟大复兴关键时期的需求, 阐述 PLC 在工业应用中的发展需求及中国在 PLC 硬软件上的发展短板,激励学生的自主创新意识,为国家、民族制造业发展贡献力量。	线下教学	课堂讲授 与小组讨	课程思政作业:结合国有品牌 PLC 发展现状,撰写不少于 500 字的东莞制造业自主创新思路简报。	目标 1
3	PLC 编程-软元件 1	张斐	2	重点: 1、PLC 的编程语言概述; PLC 编程语言的特点; 常用的编程语言-梯形 图解读; 2、三菱 PLC 的软元件介绍; 难点: 三菱 PLC 的梯形图解读;	线下教学	课堂讲授		目标 1
4	PLC 编程-软元件 2	张斐	2	重点: 1、三菱 PLC 的 X、Y 元件; 三菱 PLC 的 M 元件; 三菱 PLC 的 T 元件; 三菱 PLC 的 C 元件; 三菱 PLC 的 C 元件; 三菱 PLC 的 T 元件; 三菱 PLC 的 C 元件;		课堂讲授 与小组讨 论	课后作业	目标 1

5	PLC 编程-指令表 1 (三菱)	张斐	2	重点: 1、基本指令概述; 2、基本指令的应用; 3、应用指令的格式; 应用指令的操作数; 难点: 基本指令的应用	线下教学	课堂讲授		目标3
6	PLC 编程-指令表 2 (三菱)	张斐	2	重点:应用指令的执行形态;比较与数据传送指令;比较指令;传送指令;数据运算指令;移位指令;程序流向控制指令;程序转移类指令;中断指令(DI、EI、IRET);数据处理应用指令;难点:应用指令的编程逻辑	线下教学	课堂讲授 与小组讨 论	课后作业	目标 3
7	PLC 编程-顺序控制 与 SFC 编程	张斐	2	重点: 1、顺序控制的思路; 状态元件和步进梯形图指令(STL、RET) ; 2、SFC 图与步进梯形图; 步进梯形图的编程; 单流程的步进梯形图编程; 3、选择流程的步进梯形图编程; 4、并行分支与汇总的步进梯形图编程; ** 难点 : SFC 图与步进梯形图; 步进梯形图的编程; 并行分支与汇总的步进梯形图编程; ** 难点 : SFC 图与步进梯形图; 步进梯形图的编程; 并行分支与汇总的步进梯形图编程;	线下教学	课堂讲授 与小组讨 论	课后作业	目标 3
8	PLC 控制系统设计 方法与案例分析; PLC 系统设计过程 中所体现的工匠精 神	张斐	2	重点: 1、PLC 控制系统设计方法; 2、时序图设计法: 3、自动售饮机控制系统案例等; 难点: PLC 控制系统设计方法; 课程思政融入点: 以"不忘初心、牢记使命"为主题,结合售饮机的控制逻辑, 描述控制系统对满足人民生活便利性的要求。	线下教学	课堂讲授 与小组讨 论	课程思政作业:结合PLC的设计逻辑,撰写"以人为本、精益求精"的服务精神文章,要求不少于500字。	目标 3

→	16			
	10			

实践教学进程表

周次	实验项目名称	授课教师	学时	教学内容(重点、难点、课程思政融入点)	项目类型(验证/综合 /设计)	教学 方式	支撑课 程目标
9	实验一 定时器/计数器 功能实验	黄泳波	2	重点:在实验台上进行 PLC 接线学习、练习 PLC 定时器/计数器元件的编程应用; 难点:能正确接线,编制和调试程序。	综合	实验,5~6人一组,须完成实验报告。实验报告。实验报告。实验报告现有详细的实验记录和过程分析。	目标 2
10	实验二 十字路口交通 灯控制实验(PLC编程)	黄泳波	2	重点 :在实验台上练习 PLC 常用指令与软元件编程应用;能正确接线,编制和调试程序; 难点 :正确接线,编制和调试程序;	综合	实验,5~6人一组,须完成实验报告。实验报告。实验报告。实验报告现有详细的实验记录和过程分析。	目标 2
11	实验三 气动机械手控制实验; 理论联系实践, 实践是检验真理的唯一标准	黄泳波	2	重点:在实验台上练习接线、进行顺序控制和步进梯形图的编程;能正确接线,编制和调试程序; 难点:程序设计; 课程思政融入点:围绕学懂弄懂做实党的创新理念,在实验动手接线、调试等环节上,强调	综合	实验,5~6人一 组,须完成实 验报告。实验 报告须有详细 的实验记录和	目标 2

12	实验四 自动运输线电 气控制电路设计及 PLC 编程	黄泳波	2	实践创新的重要性,引导学生不断实践,追求创新。 重点: 对照电气控制原理图,在实验台上完成接线、并按照原理图的控制逻辑,完成PLC程序的编写与调试。 难点: 电气设计图的逻辑与PLC程序逻辑的对应。	综合	过程分析。 实验,5~6人一 组,须完成实验报告。实验 报告须有详细 的实验记录和 过程分析。	目标 2
	合计		8				

课程考核

)	to take the street of the track.			in ==	
课程目标	支撑毕业要求指标点	作业	实验	答辩+课程论文	权重
目标一	1.4	10	0	30	40
目标二	4.3	0	20	0	20
目标三	5.2	10	0	30	40
总计		20	20	60	100

备注: 1) 根据《东莞理工学院考试管理规定》第十二条规定: 旷课 3 次(或 6 课时)学生不得参加该课程的期终考核。2)各项考核标准见附件所示。

大纲编写时间: 2022 年 8 月 18 日

系(部)审查意见:

我系已对本课程教学大纲进行了审查, 同意执行。

系(部)主任签名:

日期: 2022年8月25日

附录: 各类考核评分标准表(仅供参考)

作业评分标准

观测点		评分标准		
7%/K9.KK	A (90–100)	B (80-89)	C (60-79)	D (0-59)
了解 PLC 技术发展历程、掌握 PLC 系统的构成、工作原理及 编程方法;并能够将上述理 论、方法用于机械工程中的 PLC 系统解决方案的比较与综合。 (对应目标 1,权重 0.5)	概念清楚,原理描述得当,方法合理,作业认真	概念清楚,原理描述比较得当,方法比较合理,作业认真	概念比较清楚,原理描述比较得当,方法比较合理,作业比较认真	概念比较清楚,但方法不够合理,作业不够认真
掌握三菱 FX 系列 PLC 的常用 指令和 T 形图、SFC 三种编程 方法; 学会典型单机自动化控 制的 PLC 系统设计,并能进行 软件编程调试。 (对应目标 3,权重 0.,5)	工程应用分析准确,软件应用 熟练,编程方法切实可行,能 够通过计算机的仿真验证。	工程应用分析准确,软件应用熟 练,编程方法比较可行,能够通 过计算机的仿真验证。	工程应用分析比较准确,软件应用比较熟练,编程方法可行,能够通过计算机的仿真验证。	工程应用分析比较准确, 软件应用比较熟练,编程 方法部分可行。

实验评分标准

观测点	评分标准					
7J./KJ.M.	A (90–100)	B (80-89)	C (60-79)	D (0-59)		
实验操作 (权重 0.4)	操作规范,步骤合理清晰,在规定的时间完成实验	能按要求较完整完成操作,实验 过程安排较为合理,在规定时间 完成实验	基本能按要求进行操作,实 验部分步骤安排不合理,完 成实验时间稍为滞后	操作不规范,实验步骤不 合理,未在规定的时间内 完成实验		
总结报告 (权重 0.6)	按时完成,内容全面,字迹清晰、工整,数据记录、处理、计算、作图正确,对实验结果分析合理	按时完成,内容基本完整,能够 辨识,数据记录、处理、计算、 作图基本正确,对实验结果分析 基本合理	按时完成,内容部分欠缺,但能够辨识,数据记录、处理、计算、作图出现部分错误,对实验结果分析出现部分错误,对实验结果	未提交或后期补交,内容 不完整,不能辨识,数据 记录、处理、计算、作图 出现大部分错误,未对实 验结果进行分析或分析基 本全部错误		

小组答辩+课程论文评分标准

观测点	评分标准					
<i>₩</i>	A (90–100)	B (80-89)	C (60-79)	D (0-59)		
了解 PLC 技术发展历程、掌握	概念、原理清楚,对 PLC 技术	概念、原理清楚,对 PLC 技术	概念、原理比较清楚,对	概念、原理不够清楚,对		
PLC 系统的构成、工作原理及	及系统软硬件整体认知准确,	及系统软硬件整体认知较为准	PLC 技术及系统软硬件整	PLC 技术及系统软硬件整		
编程方法;并能够将上述理	在包括梯形图、顺序功能图及	确,在包括梯形图、顺序功能图	体认知比较准确, 在包括梯	体认知比较准确,不能把		
论、方法用于机械工程中的	指令编程等方面有创新的思	及指令编程等方面有比较创新	形图、顺序功能图及指令编	握课题考核内容,作答不		
PLC系统解决方案的比较与综	路,能够准确把握课题考核内	的思路,能够准确把握课题考核	程等方面有一定的思路,能	够规范。		
台。	容,作答准确规范。	内容,作答准确规范。	够比较准确把握课题考核			

(对应目标 1, 权重 0.5)			内容,作答比较规范。	
掌握三菱 FX 系列 PLC 的常用 指令和 T 形图、SFC 三种编程 方法;学会典型单机自动化控 制的 PLC 系统设计,并能进行 软件编程调试。 (对应目标 3,权重 0.5)	对课题工程应用意义明确,课题分析准确无误,合理选择编程工具(模块),完成编程任务;答辩团队合作紧密,答辩逻辑清楚,课程论文撰写规范。	对课题工程应用意义比较明确, 课题分析准确无误,合理选择编程工具(模块),完成编程任务; 答辩团队合作较为紧密,答辩逻辑较为清楚,课程论文撰写规范。	对课题工程应用意义比较明确,课题分析比较准确,比较合理的选择编程工具(模块),能够完成编程任务;答辩团队合作较为紧密,课程论文撰写比较规范。	对课题工程应用意义比较明确,课题分析不够准确, 无法完成编程任务;答辩团队合作不够紧密,答辩逻辑不够清楚,课程论文 撰写不够规范。