《信号与系统》教学大纲

课程名称: 信号与系统

课程类别(必修/选修):必修课

课程英文名称: Signal and System

总学时/周学时/学分: 24/2/1.5

其中实验/实践学时: 0

先修课程: 高等数学、电工与电子技术

后续课程支撑: 机械控制工程基础

授课时间: 1-12 周, 星期一 3-4 节

授课地点: 6D-304

授课对象: 2019 级机械电子 1、2 班

开课学院: 机械工程学院

任课教师姓名/职称:王岩/讲师,武静/讲师

答疑时间、地点与方式:课内/外;教室/网络;交流

课程考核方式: 开卷()闭卷(√)课程论文()其它()

使用教材:《信号与系统》第三版 上册,郑君里,应启珩,杨为理编著,高等教育出版社

教学参考资料:《信号与系统》,奥本海姆编著;机械工业出版社

课程简介:

信号与系统是机械电子专业的基础课,也是核心课程。它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性。通过本课程的学习,应使学生掌握信号系统的基本知识、基本理论、基本运算及其分析应用方法,同时可培养学生的抽象思维能力和分析问题、解决问题的能力。并根据本课程应用范围广的特点,能初步应用所学的知识解决有关的问题。

课程教学目标及对毕业	更	
	サルバ1日/M/ 12 D1 V 1主	

 课程教学目标		毕业要求
目标 1: 理解信号与系统的一般性知识:通过学习,使学生掌握信号与系统的基本概念、 分类和表达形式;掌握信号的基本运算 方法、傅里叶变换和拉普拉斯变换。	1.3 能够将机电工程相关 知识和数学模型方法,用 于推演、分析复杂 <mark>机电</mark> 工 程问题。	1. 工程知识: 能够将数学、自然科学、工程基础和机械电子工程专业知识用于解决复杂机电工程问题。
目标 2: 具备一定的分析能力:掌握信号与系统的描述方法,理解信号在时域、频域、复频域描述之间的关系,能够分析简单系统的基本特性;掌握线性时不变系统的基本特性,以及卷积方法的基本思想和应用。	2.2 能基于相关科学原理 和数学模型方法,正确表 达复杂机电工程问题。	2. 问题分析能力 :能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过文献研究分析复杂机电工程问题,以获得有效结论。

理论教学进程表

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入 点)	教学模式 (线上/混 合式/线下	教学方法	作业安排	支撑课 程目标
1	绪论	王岩	2	重点:信号的描述、分类和典型示例; 难点:信号运算、阶跃信号、冲激信号; 课程思政融入点:介绍近现代中国著名信 号分析及系统工程研制,引导学生领会信	线下教学	讲授	思政作业:阅读我国信号 分析与系统设计专家的传 记	目标1

				号与系统在近现代社会发展中的重大作 用,勉励学生刻苦学习,求真求实,立志 报国。				
2	绪论	王岩	2	重点:信号的分解; 难点:系统模型的建立。	线下教学	讲授	课后习题	目标 1
3	连续时间系统的时域分析	王岩	2	重点:系统数学模型的建立,以及起始点跳变的转换。	线下教学	讲授	思政作业:学习我国信号 分析专家撰写的关于信号 分析的学术论文	目标 1
4	连续时间系统的时域分析	王岩	2	重点:卷积计算, 难点:掌握卷积的基本思路和性质; 课程思政融入点:介绍近现代中国信号分析及系统设计发展现状,激励学生发扬老一辈专家的吃苦精神,针对现阶段信号分析方法的特点认真学习,为我国的系统设计发展做出贡献。	线下教学	讲授	课后习题	目标 2
5	傅里叶变换	王岩	2	重点:周期信号的傅里叶级数分析。	线下教学	讲授	思政作业: 学习我国信号 分析专家撰写的关于信号 分析应用的学术论文	目标1
6	傅里叶变换	王岩	2	重点: 傅里叶变换; 难点: 冲激函数和阶跃函数的傅里叶变换 及其性质。	线下教学	讲授		目标 1
7	傅里叶变换	王岩	2	重点:抽样信号的傅里叶变换; 难点:抽样定理。	线下教学	讲授	课后习题	目标 2
8	拉普拉斯变换	王岩	2	重点: 拉普拉斯变换及其基本性质。	线下教学	讲授		目标1
9	拉普拉斯变换	王岩	2	重点:系统函数额基本概念;难点:系统函数零、极点对系统特性的影响。	线下教学	讲授		目标1

				课程思政融入点:介绍近现代中国信号分析发展现状,激励学生发扬老一辈专家的吃苦精神,针对现阶段信号分析的特点认真学习,为我国的系统设计发展做出贡献。				
10	拉普拉斯变换	王岩	2	重点:系统稳定性条件及拉氏变换与傅里叶变换的关系。	线下教学	讲授	课后习题	目标 2
11	傅里叶变换应用 于通信系统-滤 波、调制与抽样	武静	2	重点:了解利用系统函数求响应的方法,以及低通滤波器的设计方法。	线下教学	讲授		目标 2
12	傅里叶变换应用 于通信系统-滤 波、调制与抽样	武静	2	重点:了解信号调制与解调的基本概念。	线下教学	讲授	课后习题	目标 2
	合计		24					

课程考核

\# 4 □ + 1 =		评价依据及成绩比例(%)				权重 (%)
课程目标 支撑毕业要求指标点		综合表现	作业	实践	期末考试	
目标一	1-3	5	15	0	45	65
目标二	2-2	5	5	0	25	35
	总计	10	20	0	70	100

备注: 1) 根据《东莞理工学院考试管理规定》第十二条规定: 旷课 3 次(或 6 课时)学生不得参加该课程的期终考核。2)各项考核标准见附件所示。

大纲编写时间: 2021年2月22日

系(部)审查意见:

我系已对本课程教学大纲进行了审查,同意执行。

系(部)主任签名: 文域

日期: 2021年2月27日

附录: 各类考核评分标准表

作业评分标准

观测点	评分标准							
次 次(元	A (90–100)	B (80-89)	C (60-79)	D (0-59)				
基本概念掌握程度	概念清楚,答题正确。	概念比较清楚,作业比较认真, 答题比较正确。	概念基本清楚,答题基本正确。	概念不太清楚,答题错误 较多。				
解决问题的方案正确性	解题思路清晰,答题正确	概念比较清楚,作业比较认真, 答题比较正确。	概念基本清楚,答题基本正确。	概念不太清楚,答题错误 较多。				
作业完成态度	按时完成,书写工整、清晰,符号、单位等按规范要求执行	按时完成,书写清晰,主要符号、单位按照规范执行	按时完成,书写较为一般,部分符号、单位按照规范执行	未交作业或后期补交,不 能辨识,符号、单位等不 按照规范执行				

综合表现评分标准

观测点	评分标准							
ØMM.	A (90–100)	B (80-89)	C (60-79)	D (0-59)				
学生综合表现	到课率高,能积极参与授课期间师生互动,回答问题正确。	到课率高,参与授课期间师生互动较为积极,回答问题较正确。	到课率较高,参与授课期间 师生互动一般,回答问题基 本正确。					

期末考试评分标准根据试卷答案及评分标准进行评分。