## 《工程力学》教学大纲

课程名称:工程力学

课程类别(必修/选修): 选修

课程英文名称: Engineering mechanics

总学时/周学时/学分: 24/2/1.5

其中实验/实践学时: 0

先修课程:线性代数、大学物理 C

后续课程支撑: 材料表面工程技术,材料加工工艺与设备

授课时间: 1-12 周 周五 (3,4)

**授课地点:** 松山湖校区 7B-210

**授课对象:** 2018 材料科学与工程 1-2 班

开课学院: 机械工程学院

任课教师姓名/职称:武静/讲师

**答疑时间、地点与方式:** 1.每次上课的课前、课间和课后,采用一对一的问答方式; 2.每次发放作业时,采用集中讲解方式; 3.分散随机答疑:通过微信/电话/电子邮件/QQ 等进行答疑; 4.定期答疑:每周星期四下午/12N-207

课程考核方式: 开卷(√) 闭卷() 课程论文() 其它()

使用教材:工程力学:静力学与材料力学/单辉祖,谢传锋编.--北京:高等教育出版社,2004.01。

#### 教学参考资料:

材料力学 / 刘鸿文主编. -- 6 版. -- 北京: 高等教育出版社, 2017.7;

工程力学. 静力学和材料力学 / 唐静静, 范钦珊编著. -- 3 版. -- 北京: 高等教育出版社, 2017.2;

工程力学基础 / (德)K·马格努斯, H·H·缪勒著. -- 北京: 北京理工大学出版社, 1997;

Engineering Mechanics: statics / R.C. Hibbeler. -- Tenth Edition. -- 北京 : 高等教育出版社。

#### 课程简介:

本课程是材料科学与工程专业的专业选修课,是分析解决工程中力学问题的重要基础工具。它的教学目的和任务是在学生学习力、力偶、约束、应力与应变等基本概念及低碳钢、铸铁力学性能的基础上,使得学生对内力与外力、力系的简化、物体或简单物体系的平衡、强度和刚度问题具有清晰明确的认知和基本的分析计算能力,并初步认识压杆稳定问题和疲劳问题。本课程在讲授力学基础理论的同时,注重培养学生的力学思维和力学建模能力,

激发学生的科学探索兴趣,提高创新能力。

### 课程教学目标及对毕业要求指标点的支撑:

| 体性铁子目外及对于亚安尔语你总的义 <b>诗</b> :                                                                                           |                                                   |                                                 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| 课程教学目标                                                                                                                 | 支撑毕业要求指标点                                         | 毕业要求                                            |  |  |  |  |  |
| <b>目标 1:</b><br>掌握力与力矩、力偶与力偶矩、约束等基本概念及其表示方法,掌握力系的简化方法以及静力平衡方程。                                                         | 1 具有运用数学和化学、材料学、物理<br>学等自然科学基础知识和材料工程专<br>业知识的能力。 |                                                 |  |  |  |  |  |
| 目标 2:<br>掌握轴向拉压概念及其内力与应力计算、材料拉压时的力学性能,掌握轴向拉压杆的强度计算。掌握扭矩与扭矩图、扭转切应力与强度条件,掌握梁弯曲的基本概念、梁的剪力、弯矩及剪力图、弯矩图、梁的弯曲正应力分析、弯曲强度与刚度计算。 | 3 具有材料工程实践所需技术、技巧及使用工具的能力。                        | 3 具有材料工程实践所需技术、技巧及使用工具的能力。                      |  |  |  |  |  |
| <b>目标 3:</b> 培养学生"问题模型化,模型数学化"的思维方法; 养成理论联系实际、科学严谨、认真细致、实事求是的科学态度和职业道德。                                                | 7 能认清当前形势,了解材料及其工程技术对环境、社会及全球的影响,并培养持续学习的习惯与能力。   | 7 能认清当前形势,了解材料及其工程技术对环境、社会及全球的影响,并培养持续学习的习惯与能力。 |  |  |  |  |  |

## 理论教学进程表

| 周次 | 教学主题                 | 授课<br>教师 | 学时<br>数 | 教学内容(重点、难点、课程思政融入点)                                                                                                                                                                                                | 教学模式<br>(线上/混<br>合式/线下) | 教学<br>方法 | 作业安排                                         | 支撑课<br>程目标 |
|----|----------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------------------------------------------|------------|
| 1  | 绪论,静力学公理和物体<br>的受力分析 | 武静       | 2       | 重点:认识力学在工程中的作用和地位,了解《工程力学》课程中静力学、材料力学的研究对象、研究内容和分析方法。二力平衡公理、加减平衡力系公理及其应用等。<br>难点:不同约束的特征;正确选取研究对象。课程思政融入点:介绍我国古代的力学成就,培养学生的文化自豪感;介绍钱学森、钱伟长等近现代中国著名力学家的伟大贡献及热爱祖国、严谨治学的精神,引导学生领会力学在近现代社会发展中的重大作用,勉励学生刻苦学习,求真求实,立志报国。 | 线下                      | 课堂讲授     | 课程思政作业:每位学生通过自主阅读了解至少一位我国著名力学家的光辉事迹,并简要写出感想。 | 目标 3       |
| 2  | 汇交力系,力偶系             | 武静       | 2       | 重点:平面汇交力系平衡解析条件;力矩的计算。力偶的等效条件和性质;力偶系的合成。难点:用解析法求解平面汇交力系的合力。求解平面力偶系的平衡问题。                                                                                                                                           | 线下                      | 课堂讲<br>授 |                                              | 目标 1       |
| 3  | 平面任意力系的简化和平<br>衡     | 武静       | 2       | 重点:平面任意力系向平面内任一点的简化。不同力系下平衡方程形式;静定和超静定问题。难点:主矢与主矩的概念。选择恰当的平衡方程求解未知量;刚体系平衡问题及平衡方程。                                                                                                                                  | 线下                      | 课堂讲<br>授 | 作业: 平面任意力系作<br>用下物体的平衡问题。                    | 目标 1       |

| 4     | 绪论、轴向拉压      | 武静 | 2 | 教学的重点: 材料力学及其研究对象、材料力学的基本假定、力应力应变及其相互关系、轴向拉压概念及其内力计算、轴向拉压杆的应力教学的难点: 材料拉压时的力学性能                                                                      | 线下 | 课堂讲授     | 作业: 画轴力图、轴向<br>拉压杆应力计算                                        | 目标 2 |
|-------|--------------|----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|---------------------------------------------------------------|------|
| 5-6   | 轴向拉压、剪切      | 武静 | 2 | 教学的重点:轴向拉压杆的强度教学的难点:<br>连接件的实用计算                                                                                                                    | 线下 | 课堂讲 授    |                                                               | 目标 2 |
| 7     | 剪切、扭转        | 武静 | 2 | 教学的重点: 扭矩与扭矩图<br>教学的难点: 连接件的实用计算                                                                                                                    | 线下 | 课堂讲<br>授 |                                                               | 目标 2 |
| 8     | 扭转           | 武静 | 2 | 教学的重点: 扭转切应力与强度条件<br>教学的难点: 扭转变形与刚度条件                                                                                                               | 线下 | 课堂讲<br>授 | 作业: 画扭矩图、扭转<br>强度计算                                           | 目标 2 |
| 9     | 梁的弯曲         | 武静 | 2 | 教学的重点: 梁弯曲的基本概念<br>教学的难点: 梁的剪力、剪力图、弯矩图                                                                                                              | 线下 | 课堂讲<br>授 | 作业:画剪力图、弯矩<br>图                                               | 目标 2 |
| 10-11 | 梁的弯曲         | 武静 | 4 | 教学的重点:梁的弯曲正应力分析<br>教学的难点:弯曲强度计算<br>课程思政融入点:将强度理论运用于设计和生<br>产实践中,分析并解决工程实际问题,这一探<br>究过程完全遵循了实践-理论-实践这一普遍规<br>律,也体现了矛盾的普遍性与特殊性的哲学思<br>想,可激发学生探索知识的热情。 | 线下 | 课堂讲授     | 作业:弯曲强度计算<br>课程思政作业:每位学<br>生解读一个强度理论运<br>用于设计和生产实践中<br>的应用案例。 | 目标 2 |
| 12    | 梁的弯曲、基本变形总结、 | 武静 | 2 | 教学的重点:了解确定梁的挠度和转角,复习                                                                                                                                | 线下 | 课堂讲      | 课程思政作业:每位学<br>生解读一个设备安全事                                      | 目标 3 |

| 复习  |      | 教学的难点:基本变形总结<br>课程思政融入点:结合工程实践中,由于结构<br>的强度或刚度问题,导致设备的安全事故,加<br>强学生作为未来工程师的社会责任感教育。 | 授 | 故中结构的强度或刚度<br>问题的工程实践案例。 |  |
|-----|------|-------------------------------------------------------------------------------------|---|--------------------------|--|
| 合计: | : 24 |                                                                                     |   |                          |  |

### 课程考核

| \m 40 p 40 | + 144 (1), 71 (2) (1) | 评价依据及成绩比例(%) |      |    | <u></u> |
|------------|-----------------------|--------------|------|----|---------|
| 课程目标       | 支撑毕业要求指标点             | 作业           | 随堂测试 | 考试 | 权重(%)   |
| 目标 1       | 1                     | 10           |      | 20 | 30      |
| 目标 2       | 3                     | 10           | 10   | 40 | 60      |
| 目标 3       | 7                     | 10           |      |    | 10      |
|            | 总计                    | 30           | 10   | 60 | 100     |

备注: 1)根据《东莞理工学院考试管理规定》第十二条规定:旷课3次(或6课时)学生不得参加该课程的期终考核。2)各项考核标准见附件所示。

大纲编写时间: 2021年2月24日

系(部)审查意见:

我系(专业)课程委员会已对本课程教学大纲进行了审查,同意执行。

系(部)主任签名:



日期: 2021 年 2月 26日

备注:

## 附录: 各类考核评分标准表

# 作业评分标准

| 观测点                          | 评分标准                       |                                            |                                    |                                       |  |  |
|------------------------------|----------------------------|--------------------------------------------|------------------------------------|---------------------------------------|--|--|
| <b>7% /</b> //9 <del>/</del> | A (90–100)                 | B (80-89)                                  | C (60-79)                          | D (0-59)                              |  |  |
| 基本概念掌握程度 (权重 0.3)            | 概念清楚,答题正确。                 | 概念比较清楚,答题比较正确。                             | 概念基本清楚,答题基本正确。                     | 概念不太清楚,答题错误较多。                        |  |  |
| 解决问题的方案正确性 (权重 0.4)          | 解题思路清晰,模型建立合理,分析过程准确,结果正确。 | 解题思路比较清晰,模型建立<br>比较合理,分析过程比较准确,<br>结果比较正确。 | 解题思路基本清晰,模型建立基本合理,分析过程基本准确,结果基本正确。 | 解题思路不太清晰,模型建立不太合理,分析过程不太准确,结果错误较多。    |  |  |
| 作业完成态度 (权重 0.3)              | 按时提交,认真完成,<br>书写工整清晰、规范。   | 按时提交,作业比较认真,书<br>写比较工整清晰、规范。               | 按时提交,作业基本认真,书<br>写基本工整清晰、规范。       | 未交作业或后期补交,作业不<br>太认真,书写不太工整清晰、<br>规范。 |  |  |

# 随堂测试评分标准

| 观测点           | 评分标准       |                           |               |              |  |  |  |  |  |
|---------------|------------|---------------------------|---------------|--------------|--|--|--|--|--|
| <b>火</b> 火则 点 | A (90–100) | B (80-89)                 | C (60–79)     | D (0-59)     |  |  |  |  |  |
| 基本概念掌握程度      | 概念清楚,答题正确。 | 概念比较清楚,答题比较正确。            | 概念基本清楚, 答题基本正 | 概念不太清楚, 答题错误 |  |  |  |  |  |
| (权重 0.4)      | '帆心相足,     | '帆心山权相定,音题比权止'拥。<br> <br> | 确。            | 较多。          |  |  |  |  |  |

| 解决问题的方案正确性 | 解题思路清晰,模型建立合理, | 解题思路比较清晰,模型建立比       | 解题思路基本清晰,模型建           | 解题思路不太清晰,模型             |
|------------|----------------|----------------------|------------------------|-------------------------|
| (权重 0.6)   | 分析过程准确,结果正确。   | 较合理,分析过程比较准确,结果比较正确。 | 立基本合理,分析过程基本准确,结果基本正确。 | 建立不太合理,分析过程不太准确,结果错误较多。 |
|            |                | 木比权正洲。<br>           | 1世州,                   | 个人推溯,给木相庆权多。            |