《系	系统建模与仿真实践》教学	大纲
课程名称: 系统建模与仿真实践	实践类别: □实习 ■实训	∥ □课程设计
课程英文名称: System Modeling and	Simulating Practice	
周数/学分: 1/1		
授课对象: 2018 工业工程 1、2 班		
开课学院: 机械工程学院		
开课地点: ■校内 (12B403、404)□校外()
任课教师姓名/职称: 晏晓辉 / 副教	授	
教材、指导书: 自编讲义		
教学参考资料:周泓,邓修权,高	德华. 生产系统建模与仿真. 北京: 机机	成工业出版社. 2012
考核方式:考察		
答疑时间、地点与方式: 12B403、40	4 课中课间随时答疑, 12B402 课后答疑	,QQ、微信、电话等通讯方式答疑
课程简介:		
系统仿真与建模是工业工程专业	的实践类课程。是该专业系统工程、生产	^产 计划与控制等课程的重要补充。在该
门课程中,学生将综合运用系统工程	、运筹学等课程中的建模理论知识,并给	学习基本仿真软件的使用。作为一门实
践课程,它是对学生所学的理论课进	行一次全面的工程与管理相结合的综合证	川练与检验的过程。主要教学目标是使
学生掌握基本建模方法,并能应用 Ma	tlab、Flexsim 等软件进行仿真。	
课程教学目标及对毕业要求指标点的	支撑	
课程教学目标	支撑毕业要求指标点	毕业要求
目标1		
掌握 Matlab 进行矩阵运算,函		
数绘制的方法。能够编写 Matlab 脚	1.2 能针对生产、服务等工程系统或过	1. 工程知识: 能够将数学、自然科学、工程基础和表现知识用工程法
本或函数来进行数学模型的运算。	程建立数学模型并求解。	工程基础和专业知识用于解决复杂工业工程问题。
掌握采用 Matlab 编写代码进行简单		1-11-1-11-17-12-0
调度问题模型的求解方法。		

目标2

理解生产和服务系统的排队规 则、事件触发和推进机制。掌握运 用 Flexsim 软件对生产和服务系统 进行建模, 并通过参数调整仿真来 对系统进行模拟, 以对系统进行分 析得出有效结论,并提出改善方案 的能力。

- 识,就复杂生产或服务系统中有关效 率、质量、成本等问题确定基本解决思 路、流程和解决方案。并了解影响优化 目标和解决方案的各种因素。
- 3.1 能够应用相关工程原理和专业知 3.设计/开发能力:能够设计针对复 杂生产或服务系统问题的解决方案, 在方案中体现创新意识, 并综合考虑 社会、健康、安全、成本、法律、文 化以及环境等因素。

目标3

准时出勤并积极参加学习。理 解建模与仿真的目的与意义。掌握 Matlab 软件的基本语法、操作运算

- 5.2 能够选择与使用恰当的仪器设备、 信息资源、工程工具和专业模拟软件, 对复杂工业工程问题进行分析、计算与 设计。
- 5. 使用现代工具能力: 能够开发、选 择与使用恰当的软硬件现代工具,对 生产、服务和流程优化等复杂工程问 题进行预测与模拟,并能够理解其局

及 Flexsim 仿真软件的基本操作与	限性。
设置。了解其适应场景。并能采用	
这些软件对具体工程问题进行建模	
分析。	

实施要求、方法/形式及进度安排

一、实施要求

1.资源配置要求

系统仿真实验室(每位同学独立一台PC)

Matlab2010 以上版本软件

Flexsim 仿真软件

2.指导教师责任与要求

对实训内容进行讲解,合理安排实践相关内容,布置相关任务,组织学生讨论,积极思考。对学生在实训过程 中遇到的问题及时查看并讲解,督促检查学生自主进行实践学习,独立完成实践报告。

3.学生要求

按时上课,不迟到、不早退、不旷课,积极回答问题、展开讨论,遇到不清楚的及时提问,按时提交课程实验报告。

二、实施方法/形式

老师讲解,学生实操,在仿真实验室进行实操,课后自行查找资料,学生独立完成实训任务书中的指定内容并撰写实验报告。

三、实施进度和安排

表1 实施进度和安排

时间/周次	学时/ 周	实践内容(重点、难点、 课程思政融入点)	学生学习预期成果	教学方式	支撑课程目 标
Day 1	3	重点与难点: Matlab 矩阵运算与语法,运用所学到的方法,去尝试并绘制Matlab 图形,编写 APH法中两两对比矩阵的加法权重求取函数课程思政融入点: 讲述哈工大被禁止使用 Matlab	掌握 Matlab 软件的基本操作 掌握用 Matlab 绘制函数 图形 掌握用 Matlab 进行矩阵 运算和数值分析	讲授: 指导老师进行课程讲解和分析。 实操: 学生根据讲解 来实际操作软件进 行练习。	目标 1、目标 3

Day 2	3	软件,引入国产工程软件 卡脖子问题,强调生自主 创新精神 重点与难点: 函数和脚本 文件的编写,典型的调度 问题建模,并用 Matlab 实现两机台流水车间调 度的 Jonson 法	掌握 Matlab 基本函数的使用,对数组的操作。掌握 FSP 问题的基本模型	讲授: 指导老师进行课程讲解和分析。 实操: 学生根据讲解 来实际操作软件进 行练习。	目标 1、目标 3
Day 3	3	重点与难点:掌握利用 FlexSim 对典型的离散系 统进行仿真的技巧,理解 输入、输出和中间端口连 接的差别,掌握仿真元素 基本参数的设置	掌握 FlexSim 软件的基本使用方法。掌握 FlexSim中临时实体、固定实体以及其关联关系的建立。	讲授: 指导老师进行课程讲解和分析。 实操: 学生根据讲解来实际操作软件进行练习。	目标 2、目标
Day 4	3	重点与难点:采用 FlexSim 软件对典型的服务排队系统进行建模与 仿真分析,熟悉发生器、 回收器的设置与使用。 课程思政融入点:讲述车 站、银行等服务场景这些 年排队的变化,电子化工 具及流程再造使得服务 系统的效率有巨大提升。 培养学生优化理念。	理解服务系统的排队规则、离散事件的触发机制,掌握利用 FlexSim软件来模拟服务系统的规则。	讲授: 指导老师进行课程讲解和分析。 实操: 学生根据讲解来实际操作软件进行练习。	目标 2、目标 3
Day 5	3	重点与难点: 采用 FlexSim 软件对典型的生产系统进行建模与仿真分析,熟悉加工器、分配器、运输工具的设置与使用。 课程思政融入点: 培养学生设置正确的参数,进行仿真,并进行调整观察系统的状态。培养精益求精的态度和改善优化的理念	理解生产系统中的加工 单元、前后放置场的作 用。理解拉式生产和推 式生产对系统的影响。 掌握利用 FlexSim 软件 来模拟生产系统并通过 调整参数来实施仿真改 善。	讲授: 指导老师进行 课程讲解和分析。 实操: 学生根据讲解 来实际操作软件进 行练习。	目标 2、目标

	课程考核						
序	\#40 D.1=	* be de de	评价依据及风	成绩比例(%)	-tπ ₹ (α/)		
号	课程目标	考核内容	学习态度	实验报告	权重(%)		
1	目标 1 掌握 Matlab 进行矩阵运算,函数绘制的方法。能够编写 Matlab 脚本或函数来进行数学模型的运算。掌握采用 Matlab 编写代码进行简单调度问题模型的求解方法。	代码编写正确而 简洁,结果正确, 运行良好	0	30	30		
2	目标2 理解生产和服务系统的排队规则、事件触发和推进机制。掌握运用 Flexsim 软件对生产和服务系统进行建模,并通过参数调整仿真来对系统进行模拟,以对系统进行分析得出有效结论,并提出改善方案的能力。	模型搭建正确, 仿 真参数设置无误, 运行良好。能得出 有效的结论和合 理意见	0	30	30		
3	目标3 准时出勤并积极参加学习。理解建模与仿真的目的与意义。掌握 Matlab 软件的基本语法、操作运算及 Flexsim 仿真软件的基本操作与设置。了解其适应场景。并能采用这些软件对具体工程问题进行建模分析。	按时参加课程,无迟到早退。积极参与互动,有问题主动联系老师。熟练掌握软件操作,准时提交实验报告,报告整理规范合理	20	20	40		
	合计		20	80	100		

屡晓辉

注: 各类考核评价的具体评分标准见《附录: 各类考核评分标准表》

大纲编写时间: 2021-08-25

系(部)审查意见:

我系已对本课程教学大纲进行了审查,同意执行。

系(部)主任签名:

日期: 2021 年 8 月 27 日

附录: 各类考核评分标准表(参考)

学习态度标准

教学目标要求	评分标准					
双子口你安水	90-100	80-89	60-79	0-59	(%)	
目标 3: 准时出勤并	积极出勤,没有	积极出勤,没	迟到 1-2 次,或	无故缺勤 1		
积极参加学习。理解	迟到、早推,按	有迟到、早	请假1次以上。	次以上,或		
建模与仿真的目的与	时提交各项所	推,按时提交	在催促下能够	不及时提交		
意义。掌握 Matlab 软	需资料.上课态	各项所需资。	提交各项所需	课程材料。		
件的基本语法、操作	度优异,能够积	上课态度良	资料。上课态	上课态度不		
运算及 Flexsim 仿真	极主动的展示	好,能够按照	度端正,能够	端正,对软		
软件的基本操作与设	自己的实践内	老师的要求	在老师和同学	件的掌握程	100	
置。了解其适应场景。	容。在提问中踊	进行练习,对	的指导下完成	度不足		
并能采用这些软件对	跃回答, 在软件	软件操作掌	实训指定的内			
具体工程问题进行建	操作上展现出	握情况良好。	容。			
模分析。	明显的熟练度。					
(支撑毕业要求指标						
点 5.2)						

实验报告评分标准

	评分标准				权 重
教学目标要求	90–100	80-89	60-79	0-59	(%)
目标 1 掌握 Matlab 进行矩阵运算,函数绘制的方法。能够编写数绘制的方法。能够编写Matlab 脚本或函数来进行数学模型的运算。掌握采用 Matlab编写代码进行简单调度问题模型的求解方法。 (支撑毕业要求指标点 1.2)	实验1和录码法,简 AHP Johnson 整 短光	实验清正和完版基按指要情和录编AHP和录编AHP和表点本本照导求况实书完好实较码P和通足。验的成实	实验1和录1和录在HP和完版分但编论的通部。分结论证,AHP和完成,并可以由于的一个。	报不码行错完指要在袭告时不或误成导求严提,能严未实书或重	37. 5
目标2 理解生产和服务系统的排队 规则、事件触发和推进机制。	实验3和实验4记录清晰,建模正	实验3和实验4记录清晰,建模正	实验3和实验4记录完整,建模基	报告提交不及时,模型或参数	37. 5

教学目标要求	评分标准				权 重
(90-100	80-89	60-79	0-59	(%)
掌握运用 Flexsim 软件对生产和服务系统进行建模,并通过参数调整仿真来对系统进行模拟,以对系统进行分析得出有效结论,并提出改善方案的能力。 (支撑毕业要求指标点 3.1)	确置够的针结深和照导求况参理自析仿进思整验的成数,自并仿进思整验的成态数能记并真行考按指要情	确置针结分按指要情参理仿进结实书完收数,仿进结实书完好数。	本少或有验果错对果析正数设按要有误仿进总确参置照,部能真行法。有数没实结分针结分	设多果大成导求严有,允许较结较完排要在数结较完指要在	
目标3 准时出勤并积极参加学习。理解建模与仿真的目的与意义。 掌握 Matlab 软件的基本语法、操作运算及 Flexsim 仿真软件的基本操作与设置。了解其适应场景。并能采用这些软件对具体工程问题进行建模分析。 (支撑毕业要求指标点 5. 2)	实报格内面整正软记改的验告式容清、确件录善展报体范和晰图反运以分示。	实报格规和为整正软记改的验字基内面晰图反运以分积极体。本容较完能映行及析	实内完不截录好实和果验容整则图未的验实。	实内整规及能映程结在袭验容格。记正实和果严报不式截录确验实或重	25