《冲压工艺与模具设计》教学大纲

课程名称: 冲压工艺与模具设计

课程类别(必修/选修):必修

课程英文名称: Stamping Process and Die Design

总学时/周学时/学分: 24/2/1.5

其中实验/实践学时: 0

先修课程: 机械制图、液压与气动、机械设计基础、互换性与技术测量

后续课程支撑: 模具制造工艺基础、型腔模设计

授课时间: 1-12 周/周四/1-2 节、3-4 节

授课地点:松山湖校区 6A-203

授课对象: 2021 材料控制 1 班、2 班

开课学院: 机械工程学院

任课教师姓名/职称: 尚欣/讲师

答疑时间、地点与方式: 1.每次上课的课前、课间和课后,在上课教室答疑; 2.工作日办公室 12C303 答疑; 3.平时邮件、微信、QQ、电话答疑。

课程考核方式: 开卷()闭卷(√)课程论文()其它()

使用教材: 《冲压工艺及冲模设计》 (第2版), 翁其金、徐新成主编, 机械工业出版社, 2019.

课程简介:本课程是材料成型及控制工程方向专业学生的必修专业课程之一,它是一门将常见模具设计与制造技术有机融合的综合性课程。本课程主要论述材料的工艺性能,讲授常见典型模具的设计与制造方法,针对性讲授模具的制造工艺及装配工艺。本课程旨在使学生掌握常见典型模具的设计与制造方法,使学生具有一般模具的设计与制造能力,形成模具制造观念及行业素养,为毕业设计、将来的技术工作打下基础。

课程教学目标及对毕业要求指标点的支撑:

课程教学目标	支撑毕业要求指标点	毕业要求
目标 1:	1-4 能够将材料成型工程相关知识和	1 工程知识: 掌握扎实的数学知识、物理、化学等
了解金属塑性成型原理,掌握冲压工艺与模具设计的基础	数学模型方法用于复杂材料成型工程	自然科学知识,力学、电工电子学、计算机学等工
知识及成形技术。	问题解决方案的比较与综合。	程基础知识以及机械制图、材料科学、材料成型、
		机械设计等专业知识,并将其用于解决成型设备和

		产品的设计、开发、制造、管理等过程中的复杂材料成型工程问题。
目标 2: 了解冲压成形特点及板材冲压成形性能,掌握冲压件的设计原则及冲压工艺,能够正确合理地设计冲压产品。	2-2 能基于相关科学原理和数学模型 方法,正确表达复杂材料成型工程问 题。	2 问题分析: 能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过文献研究分析成型设备和产品的设计、开发、制造、管理等过程中的复杂材料成型工程问题,以获得有效结论。
目标 3: 掌握典型冲压模具结构的设计方法,具备设计中等复杂程度的冲压模的能力。	3-1 掌握材料成型领域相关工程设计和 产品开发全周期、全流程的基本设计/开 发方法和技术,了解影响设计目标和技 术方案的各种因素	3 设计/开发解决方案: 能够设计针对成型设备和产品的设计、开发、制造、管理等过程中的复杂材料成型工程问题的解决方案,设计满足特定需求的成型系统、单元(部件)或工艺流程,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素。

理论教学进程表

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入 点)	教学模式 (线上/混合式 /线下	教学方法	作业安排	支撑课 程目标
1	冲压工艺基础知识	尚欣	2	重点: 冲压工艺分类、冲压材料 难点: 能根据冲压件的结构特征初步判 断出该冲压件所需的基本冲压工序、影 响冲压成形性能的力学指标	线下教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合		目标 1
2	冲压工艺基础知识	尚欣	2	重点:冲压设备、冲压常用标准、冲压技术现状及发展 难点:冲压设备的选用原则、冲压模具标准化及专业化	线下教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合	阶段性作业1	目标 1
3	冲压工艺基础理论	尚欣	2	重点:塑性成形基本概念、塑性成形力学基础、塑性成形基本规律 难点:能利用冲压基本理论解释常见的冲压现象。	线下教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合		目标 1

4	冲裁工艺	尚欣	2	重点: 冲裁变形过程分析、冲裁件质量分析及控制 难点: 模具工作部分尺寸偏差的控制、模具间隙的控制、能根据冲裁件的废品形式分析其产生的原因,熟悉解决的措施。 课程思政融入点: 介绍我国改革开放 40 年在中国共产党的正确领导下中国冲压模具制造业快速崛,培养学生的爱国爱党爱制造业情怀。	线下教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合		目标 2
5	冲裁工艺	尚欣	2	重点: 冲裁工艺计算、裁工艺设计 难点: 冲裁工艺冲裁件的工艺性分析 冲裁工艺方案确定		用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合		
6	冲裁模设计	尚欣	2	重点: 冲裁模的基本类型与典型结构 难点: 冲裁模零部件设计、冲裁模具设计 要点及实例	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合	阶段性作业 2	目标 3

7	弯曲工艺	尚欣	2	重点:弯曲的类型及变形过程分析、弯曲工艺计算 难点:弯曲件的回弹分析、弯曲件的工艺设计 课程思政融入点:介绍东莞模具制造业的发展现状及未来趋势,让学生了解当地的产业,具有热爱本专业的热情。	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合		目标 2
8	弯曲模设计	尚欣	2	重点: 弯曲模具工作部分的确定 难点: 弯曲模结构设计要点	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合		目标 3
9	拉深工艺	尚欣	2	重点: 拉深变形过程与力学分析、筒形件 拉深工艺设计 难点: 拉深件的工艺性分析	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合	阶段性作业3	目标 2
10	拉深模设计	尚欣	2	重点:首次拉深模、再次拉深模、拉深模工作部分结构、压边装置 难点:凸、凹模工作部分尺寸计算、拉深模设计计算	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨		目标 3

						论三结合	
11	其他成形工艺与模 具设计	尚欣	2	重点:局部成形、翻边、缩口的成形工艺方法 难点:局部成形、翻边、缩口的成形模具结构设计	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合	目标 3
12	其他成形工艺与模 具设计	尚欣	2	重点: 旋压、热成形工艺方法 难点: 旋压、热成形模具结构设计	线上教学	用 PPT 多 媒体课堂 讲授、启 发、讨 论三结合	目标 2
	合计						

课程考核

	A15/FF 2 NJ							
\# 40 to 10°	北州华丽 亚州		评价依据及成绩	权重(%)				
课程目标	支撑毕业要求指标点	作业	平时表现	期末考试				
目标一	1-4	6	3	15	24			
目标二	2-2	8	4	25	37			
目标三	3-1	6	3	30	39			
总计		20	10	70	100			

备注: 1)根据《东莞理工学院考试管理规定》第十二条规定:旷课3次(或6课时)学生不得参加该课程的期终考核。2)各项考核标准见附件所示。

大纲编写时间: 2024年2月20日

系(部)审查意见:

我系已对本课程教学大纲进行了审查, 同意执行。

系(部)主任签名: 油泽

日期: 2024 年 3 月 8 日

附录: 各类考核评分标准表

作业评分标准

观测点	评分标准							
次次以示	A (90–100)	B (80-89)	C (60-79)	D (0-59)				
基本概念掌握程度	概念清楚,答题正确。	概念比较清楚,作业比较认真, 答题比较正确。	概念基本清楚,答题基本正确。	概念不太清楚,答题错误 较多。				
解决问题的方案正确性	解题思路清晰,计算正确	概念比较清楚,作业比较认真, 答题比较正确。	概念基本清楚,答题基本正确。	概念不太清楚,答题错误 较多。				
作业完成态度	按时完成,书写工整、清晰,符号、单位等按规范要求执行	按时完成,书写清晰,主要符号、单位按照规范执行	按时完成,书写较为一般,部分符号、单位按照规范执 行	未交作业或后期补交,不 能辨识,符号、单位等不 按照规范执行				

平时表现评分标准

观测点	评分标准								
75L/KJ AK	A (90–100)	B (80-89)	C (60-79)	D (0-59)					
学生综合表现 (权重1)	出勤高,能积极参与授课期间 师生互动,小测验答案正确,。	出勤率高,参与授课期间师生互 动较为积极,小测验答案较正 确。							

备注: 期末考试评分标准根据试卷答案及评分标准进行评分。