《逆向工程与 3D 打印技术》教学大纲

课程名称: 逆向工程与 3D 打印技术 课程

课程类别(必修/选修):选修

课程英文名称: Reverse Engineering and 3D Printing Technology

总学时/周学时/学分: 24/4/1.5

其中实验/实践学时: 12

先修课程:产品结构设计与三维建模

后续课程支撑:智能产品设计与开发

授课时间: 11-16 周, 周一 3-4 节, 周二 1-2 节

授课地点:松山湖校区 12N404

授课对象: 2021 工业设计 1 班, 2021 工业设计 2 班

开课学院: 机械工程学院

任课教师姓名/职称:朱文志/副研究员、洪颖

答疑时间、地点与方式:

- 1. 每次上课的课前、课间和课后,在上课教室答疑:
- 2. 平时邮件、微信、电话答疑。

课程考核方式: 开卷 () 闭卷 () 课程论文 (√) 其它 (3D 打印产品) (√)

使用教材:

- 1. 成思源, 《逆向工程技术综合实践》, 北京: 电子工业出版社, 2010
- 2. 3D打印技术讲义

教学参考资料:

1. 陈雪芳,孙春华,《逆向工程与快速成型技术应用(第2版)》,北京:机械工业出版社,2015

课程简介:

本课程是工业设计专业任选课,综合和归纳了逆向工程中的关键技术和 3D 打印技术多种工作原理及应用场景。本课程旨在让学生了解掌握数据采集技术、数据处理与 CAD 建模技术、3D 打印制造技术等,并对各软、硬件系统的基本原理、系统构成和操作流程进行介绍,并通过课程实践为学生提供第一手实操机会,加深学生对逆向工程技术和 3D 打印技术的理解。

课程教学目标及对毕业要求指标点的支撑:						
课程教学目标	支撑毕业要求指标点	毕业要求				
目标 1: 理解逆向工程和 3D 打印的概念,运用逆向工程仪器、软件进行数字模型构建,综合运用逆向工程数字模型和 3D 打印进行产品快速成型,通过现场案例教学运用逆向工程 及 3D 打印技术完成产品设计及输出。养成理论联系实际、 科学严谨、认真细致、实事求是的科学态度和职业道德。	2-2 能基于数学、自然科学和专业知识,正确表达产品设计中的关键关键问题。	2. 能够应用数学、自然科学和设计基础知识,识别、表达并通过文献研究分析产品设计等过程中的力学、结构、人机关系、设计需求、造型等问题,以获得有效结论。				
目标 2: 熟练掌握三维扫描和 FDM 型 3D 打印的基本操作,学会使用常用逆向工程软件进行模型优化。培养学生具有主动参与、积极进取、崇尚科学、探究科学的学习态度和思想意识。	5-1 掌握各种二维、三维设计软件工 具,并能熟练运用。	5. 使用现代工具: 能够在产品设计、开发中使用恰当的现代设计软件和信息技术工具。				

理论教学进程表

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方法	作业安排	支撑课 程目标
11	逆向工程 技术概 述,三坐 标测量 机、式 臂式测	朱文志	4	重点: 逆向工程的定义。 难点: 逆向工程设备的特点。 课程思政融入点: 介绍逆向工程演变历史, 讨论讲解国内 技术发展路线, 培养学生的爱国精神, 区分逆向工程与简 单抄袭。	线下	课堂讲授与 小组讨论	课后作业: 文献调研, 每人阅读 3 篇与中国逆 向工程发展 有关的文	目标 1

	量、三维 扫描						献,撰写 400 字读后 感。	
12	逆向建模 软件介绍 及模型软 件教学实 践	朱文志	4	重点:介绍 Geomagic 系统。 难点:Geomagic 软件实操。	线下	课堂讲授和 小组讨论	Geomagic 作业操作	目标 1
13	3D 打印 技术原理 简介	朱文志	4	重点: SLA、FDM、SLS、SLM、LENS、SEBM 技术。 难点: 各类 3D 打印技术的原理与工艺。 课程思政融入点: 结合 3D 打印技术发展历程,结合党的 发展历史学习我国 3D 打印领域代表人物追求卓越、不懈 奋斗的光荣历程,让学生在学习中巩固社会主义核心价值 观。	线下	课堂讲授和 小组讨论	课堂讨论: 与其他学科 的相关性。	目标 1
14	3D 打印 技术原理 简介	朱文志	2	重点:金属3D打印、高分子3D打印、陶瓷3D打印、生物3D打印。 生物3D打印。 难点:各类材料3D打印的性能、缺陷控制及应用。 课程思政融入点:结合3D打印材料发展历程,了解我国 3D打印领域代表人物的光荣历程,让学生在学习中巩固 社会主义核心价值观。	线下	课堂讲授和 小组讨论	课后作业: 文献调研, 查找 3D 打 印技术领域 综述文章。 撰写 400 字 读后感。	目标 1
	合计		14					

实践教学进程表

周次	实验项目名称	授课教师	学时	教学内容(重点、难点、课程思政融入点)	项目类型(验证/综合	教学	支撑课	
用权	关独纵自石物	1文体织炉	_ 1 , 11,	数子内存(重点、准点、体性心以触八点)	/设计)	方法	程目标	
1.4	三维造型设计	朱文志	2	重点: 三维造型软件的使用。	设计	实验	目标 2	
14		水又心		难点: 个性化三维 CAD 模型构建。	· · · · · · · · · · · · · · · · · · ·			
	三维扫描教学	→ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			重点: 三维扫描仪的使用。			
1.5		洲 新	共 颖 4	难点:个性化物体的三维扫描。	综合	实验	目标 2	
15	实践	171424		课程思政融入点:讨论国内三维扫描软硬件产				
				商及产品,培养学生的自主创新意识。				
1.6	3D 打印实践	洲 貊	洪颖 4	重点:FDM型3D打印和SLA型3D打印实践。	综合	实验	目标 2	
16	2D 11 11 VIX	1六秋		难点:软件切片和打印后物品后处理。	<i>≫</i> , □		H 143, 7	
	合计		10					

课程考核

课程目标	支撑毕业要求指标点	评价	依据及成绩比例		
		平时成绩	实验	课程论文与作品	
目标 1	2-2	10	0	30	40
目标 2	5-1	10	25	25	60
	20	25	55	100	

备注: 1) 根据《东莞理工学院考试管理规定》第十二条规定: 旷课 3 次(或 6 课时) 学生不得参加该课程的期终考核。2) 各项考核标准见附件所示。

大纲编写时间: 2023年8月20日

系(部)审查意见:

我系已对本课程教学大纲进行了审查, 同意执行。

系(部)主任签名:

日期: 2023年8月27日

备注:

附录: 各类考核评分标准表

作业评分标准

观测点	评分标准						
<i>为</i> 此则 無、	A(100)	B(85)	C(70)	D(0)			
基本概念掌握程度	概念清楚,答题正确。	概念比较清楚,作业比较认真, 答题比较正确。	概念基本清楚,答题基本正确。	概念不太清楚,答题错误 较多。			
解决问题的方案正确性	解题思路清晰,计算正确	概念比较清楚,作业比较认真, 答题比较正确。	概念基本清楚,答题基本正确。	概念不太清楚,答题错误 较多。			
作业完成态度	按时完成,书写工整、清晰, 符号、单位等按规范要求执行	按时完成,书写清晰,主要符号、 单位按照规范执行	按时完成,书写较为一般,部分符号、单位按照规范执行	未交作业或后期补交,不 能辨识,符号、单位等不 按照规范执行			

实验评分标准

观测点	评分标准					
次 /则点	A(100)	B(85)	C(70)	D(0)		
预习报告	按时完成,内容完整、正确,	按时完成,内容基本完整,书写	延时完成,内容基本完整,	未提交或后期补交,内容		
(权重 0.3)	字迹清晰工整	清晰	能够辨识	不完整,不能辨识		
实验操作	操作规范,步骤合理清晰,在	能按要求较完整完成操作, 实验	基本能按要求进行操作,实	操作不规范,实验步骤不		

(权重 0.4)	规定的时间完成实验	过程安排较为合理,在规定时间 完成实验	验部分步骤安排不合理,完 成实验时间稍为滞后	合理,未在规定的时间内 完成实验
总结报告 (权重 0.3)	晰、工整,数据记录、处理、	按时完成,内容基本完整,能够 辨识,数据记录、处理、计算、 作图基本正确,对实验结果分析 基本合理	按时完成,内容部分欠缺,但能够辨识,数据记录、处理、计算、作图出现部分错误,对实验结果分析出现部分错误,对实验结果	未提交或后期补交,内容 不完整,不能辨识,数据 记录、处理、计算、作图 出现大部分错误,未对实 验结果进行分析或分析基 本全部错误

课程论文与作品评分标准

课程目标	观测点	评分标准				
林性日 物		A(90-100)	B(80-89)	C(60-79)	D(0-59)	(100%)
目标 1:	能够应用数学、自	主题跟课程论文要求	主题跟课程论文要求	主题跟课程论文要求	不交课程论	
理解逆向工程和 3D 打印的概	然科学和设计基	的相关性高,能熟练应	的相关性高,能正确应	的相关性高,基本能应	文或课程论	
念,运用逆向工程仪器、软件	础知识,识别、表	用数学、自然科学和设	用数学、自然科学和设	用数学、自然科学和设	文中主题跟	
进行数字模型构建,综合运用	达并通过文献研	计基础知识,识别、表	计基础知识,识别、表	计基础知识,识别、表	课程论文要	40
逆向工程数字模型和 3D 打印	究分析产品设计	达并通过文献研究分	达并通过文献研究分	达并通过文献研究分	求没有相关	10
进行产品快速成型,通过现场	等过程中的力学、	析产品设计等过程中	析产品设计等过程中	析产品设计等过程中	性,论述没有	
案例教学运用逆向工程及 3D	结构、人机关系、	的力学、结构、人机关	的力学、结构、人机关	的力学、结构、人机关	逻辑,论文出	
打印技术完成产品设计及输	设计需求、造型等	系、设计需求、造型等	系、设计需求、造型等	系、设计需求、造型等	现大量原文	

出。养成理论联系实际、科学 严谨、认真细致、实事求是的	问题,以获得有效 结论。	问题,以获得有效结论。	问题,以获得有效结论。	问题,以获得有效结论。	抄袭现象等。	
科学态度和职业道德。 (支撑毕业要求指标点 2-2)						
目标 2: 熟练掌握三维扫描和 FDM 型 3D 打印的基本操作,学会使 用常用逆向工程软件进行模 型优化。培养学生具有主动参 与、积极进取、崇尚科学、探 究科学的学习态度和思想意 识。 (支撑毕业要求指标点 5-1)	使用现代工具:能够在产品设计、开发中使用恰当的现代设计软件和信息技术工具。	能熟练掌握三维扫描和FDM型3D打印的基本操作,熟悉常用软件,能将这些知识熟练运用到课程论文中。	能正确掌握三维扫描和 FDM型 3D 打印的基本操作,熟悉常用软件,能将这些知识熟练运用到课程论文中。	能基本正确掌握三维 扫描和 FDM 型 3D 打 印的基本操作,熟悉常 用软件,能将这些知识 熟练运用到课程论文 中。	不交课程论 文或课程论 文出现大量 原文抄袭现 象等。	60