《机械制造技术基础 A》教学大纲

课程名称: [0110241] 机械制造技术基础 A

课程类别(必修/选修): 必修

课程英文名称: Mechanism Manufacture Technology Basis A

总学时/周学时/学分: 48/3/3

其中实验/实践学时: 4

先修课程: 机械制图、理论力学、材料力学、机械原理、互换性与技术测量、工程材料及成型技术

后续课程支撑:现代机械设计方法、制造系统自动化技术、机电产品创新与实践、机器人技术及应用、非标自动化设备设计实践

授课时间: 2、4-18 周 星期三(5-7 节)

授课地点: 6C102

授课对象: 2020 级机械电子 1-2 班;

开课学院: 机械工程学院

任课教师姓名/职称: 张玉勋 讲师: 张建阁 讲师

答疑时间、地点与方式: 1. 每次上课的课前、课间和课后答疑; 2. 每次发放作业时,采用集中讲解方式; 3. 通过微信、电话、电子邮件等进行答疑

课程考核方式: 开卷()闭卷(√)课程论文()其它()

使用教材:

(1) 黄健求、韩立发主编. 《机械制造技术基础》(第3版), 机械工业出版社, 2020年.

课程简介:

本课程是机械设计制造及其自动化专业学生的必修专业课程,主要介绍机械产品的生产过程及生产活动的组织;金属切削过程及其基本规律;机床、刀具、夹具的基本知识;机床夹具设计;机械加工工艺规程设计;机械加工精度及表面质量的概念及其控制方法;现代制造技术发展的前沿与趋势,使学生在机械制造技术方面掌握最基本的知识和技能。

课程教学目标及对毕业要求指标点的支撑:

	课程教学目标	支撑毕业要求指标点	毕业要求
--	--------	-----------	------

-	1	_

能够运用金属切削过程的基本知识、原理和计算方法等知识对机械制造过程中的现象进行表述、解释和分析,以及将这些知识应用于制造过程的工艺设计,相关设备、工装的结构布局与设计、机电系统控制手段及改进等:

1.3 能够将机械工程相关知识和数学模型方法,用于推演、分析复杂机械工程问题。

1. 工程知识:掌握扎实的数学知识、物理、化学等自然科学知识,力学、电工电子学、计算机学、工程材料学等工程基础知识以及机械制图、机械原理、机械设计、机械传动与控制等专业知识,并将其用于解决机电产品设计、开发、制造、管理等过程中的复杂机械工程问题。

目标 2

能够根据零件加工要求及现有条件,借助文献研究,综合分析一般机械加工方法和刀具的特点及其局限性,合理选用加工机床及刀具;能够利用机械加工精度、表面质量的基本知识,借助文献研究,通过现象分析获得影响零件机械加工质量的关键因素,提出提高机械加工质量的工艺措施。

2.4 能运用相关科学基本原理,借助文献研究,分析机电产品设计、开发、制造、管理等过程的影响因素,获得有效结论。

2 问题分析: 能够应用数学、自然科学和工程科学的基本原理,识别、表达并通过文献研究分析机电产品设计、开发、制造、管理等过程中的复杂机械工程问题,以获得有效结论。

目标3

能够利用机床夹具设计的基本原理、定位误差计算等工程知识,根据不同零件加工要求设计出具有效率和成本意识的夹具,能够在设计环节中体现创新意识;能够利用零件和装配体工艺路线拟订的基本知识、原则及加工工艺规程编制的一般方法等相关工程知识,针对不同零件(装配体)及其结构特点而设计出恰当的加工路线、制定出具有效率与成本意识的、满足工艺逻辑思维的、并符合法律法规要求的制造工艺及生产流程。

3.2 能够设计出满足特定需求的机械系统、单元(部件)和工艺流程,并能够在设计中体现创新意识。

3设计/开发解决方案:能够设计针对机电产品设计、 开发、制造、管理等过程中的复杂机械工程问题的 解决方案,设计满足特定需求的机械系统、单元(部件)或工艺流程,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境 等因素。 目标 4: 能够就机械制造相关问题进行陈述发言,清晰表达研究或 题,以口头、文稿、图表等 设计的具体思想、思路、方案、所采取的措施和效果等,并能与业一方式,准确表达自己的观点, 界同行及社会公众进行有效沟通和交流

10.1 能就机械工程相关问 回应指令,理解与业界同行 及社会公众交流的差异性;

10 沟通: 能够就复杂机械工程问题与业界同行及 社会公众进行有效沟通和交流,包括撰写报告和 设计文稿、陈述发言、清晰表达或回应指令,并具 备一定的国际视野, 能够在跨文化背景下进行沟通 和交流。

课程思政目标:通过课程的学习,培养学生的人文关怀、爱国精神以及团队合作精神,培养学生的全局观与辩证观,养成严谨的科学态度、实事求是的 工作作风以及良好的职业素养。

理论教学进程表

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方 法	作业安排	支撑课 程目标
2	机械制造概论;	张玉勋	1	重点:本课程的教学及学习方法,开设目的,研究对象和内容;生产类型及工艺特征。 难点:生产纲领的计算及生产类型的区分。 课程思政融入点:介绍新中国成立以来在机械制造领域所取得的成绩(比如大国重器的研发),培养学生的爱国情操。 劳动教育融入点:劳动精神教育	线下	讲授	课程思政作业 1:要求阅读 至少两篇与机 械制造发展有 关的文章,理 解加工制造对 国民经济的重 要性。	目标 1
	金属切削基本概 念;刀具几何角 度。	具几何角 2	2	重点 :金属切削的基本概念、切削用量三要素、 切屑层几何参数;刀具切削部分结构要素及角度 定义。	线下	讲授		目标 1

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方法	作业安排	支撑课 程目标
				难点: 刀具几何角度的定义、组成、测量; 切削 层几何参数的计算。				
4	金属切削过程中的物理、力学现象	张建阁	3	重点: 切屑的形成过程及影响切削变形的因素; 切屑的种类、排屑及断屑措施; 切屑力的产生机理及影响规律。 难点: 变形的物理本质,正确利用金属切削机理控制切削变形和切屑; 切削力的计算及控制。	线下	讲授		
5	金属切削过程中的物理、力学现象	张建阁	3	重点:切削力的影响规律、切削功率的计算;切削热及切削温度的产生机理及影响规律;刀具磨损及刀具使用寿命的基本概念及影响因素; 难点:切削力的影响因素及控制措施;刀具磨损及刀具使用寿命的原因及控制措施。	线下	讲授		目标 1
6	材料的切削加工 性与切削条件的 合理选择	张建阁	1	重点: 材料切削加工性的含义、指标及影响因素 及改善途径 难点: 刀具几何参数、切削用量的选择。	线下	讲授/ 案例分 析		
7	材料的切削加工 性与切削条件的 合理选择 磨削与砂轮	张建阁	3	重点: 材料切削加工性的含义、指标及影响因素及改善途径; 切削加工条件(刀具几何参数、切削用量、切削液)对加工变形、力、热寿命等的作用规律及合理选择; 磨削力与磨削温度; 砂轮的特性与选择。	线下	讲授	作业 1	目标 1

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方 法	作业安排	支撑课 程目标
				难点: 刀具几何参数、切削用量的选择; 加工中如何正确选择砂轮的粒度和硬度。				
8	刀具类型、材料; 车刀、铣刀	张建阁	3	重点:刀具材料的基本特点及常用刀具材料的特点及应用范围;车刀的种类、结构形式及用途。常用切削刀具种类、结构特点及用途。 难点:成形车刀的前、后角的形成;机床的表面成形运动分析	线下	讲授/ 案例分 析	作业 2	目标 2
	孔加工刀具、螺纹 刀具、拉刀、齿轮 加工刀具		2	重点:刀具材料的基本特点及常用刀具材料的特点及应用范围;车道的种类、结构形式及用途。常用切削刀具种类、结构特点及用途;机床的运动及传动链、机床型号的含义;车床结构及用途,难点:成形车刀的前、后角的形成;机床的表面成形运动分析;	线下	VII. let	课程思政作业 2:结合本课程,要求学生每人阅读两篇	目标 2
9	金属切削机床概述	张建阁	1	重点: 机床的运动及传动链、机床型号的含义 难点: 机床的表面成形运动分析。 课程思政融入点: 结合实际案例,介绍我国制造 业发展现状,让学生领会"核心技术要掌握在自 己手里"的深刻内涵及来之不易,鼓励其沉心学 习及工作。	~ I	讲授	与机械制造相 关文章,了解 广东或东莞制 造业的现状。	目标 2
10	金属切削机床	张建阁	3	重点: 铣床、磨床、钻床、镗床、滚齿机工作、	线下	讲授/		目标 2

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方 法	作业安排	支撑课 程目标
	(铣、磨床、钻、 镗、齿轮加工机 床)			结构特点及用途。 难点: 展成法加工齿轮齿形原理;机床的选用。		案例分析		
11		张建阁	3	重点: 夹具的功用、分类与组成; 夹具的定位原理; 夹具的定位方法及典型定位方式元件的特点和应用; 定位误差的定义、分析及计算办法; 难点: 六点定位原理; 定位误差的分析与计算	线下	讲授		
12	机床夹具设计原理	张玉勋	3	重点:定位误差的定义、分析及计算办法;工件的夹紧装置的组成、要求及夹紧力的确定;典型夹紧机构的特点及应用;夹具的选用和设计。 难点:定位误差的分析与计算;夹紧力的确定,夹具的选用及设计。 劳动教育融入点:劳动工具设计与使用	线下	讲授/ 案例分 析	作业 3	目标 3

周次	教学主题	授课教师	学时数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方 法	作业安排	支撑课 程目标
13	机械加工精度及 统计分析	张玉勋	3	重点:加工精度的概念及获得办法;原理误差、工艺系统几何误差及加工过程误差的类型、表现形式、影响机理及控制措施;加工误差的性质及统计分析; 难点:误差的识别及加工精度的统计分析方法。 课程思政融入点:介绍加工精度对零件的重要性,要求学生应具有"工匠精神",对待学习与工作水不满足,培养学生追求极致的品质精神。 劳动教育融入点:工匠精神教育	线下	讲授/ 案例分 析	作业 4 课程思政作业 3: 结合本课程,要求学生每人至少阅读两篇与新时代的"工匠精神"有关的文章,	目标 2
14			1	重点: 加工误差的性质及统计分析 难点: 误差的识别及加工精度的统计分析方法。			理解工匠精神	
15	已加工表面质量 及其影响因素	张玉勋	2	重点:机械加工表面质量影响因素及控制途径。 提高机械加工精度的工艺措施;表面质量的概念、 质量影响因素及控制途径。 难点:提高表面质量的的措施。				目标 2
	机械制造工艺规 程的概念及制定 原则		1	重点 :机械制造工艺过程的概念;机械加工工艺规程的作用、制定原则及步聚。 难点 :机械加工工艺规程制定原则的掌握。	线下	讲授	作业 5	目标 3
16	机械加工工艺规 程的设计	张玉勋	3	重点 :零件结构工艺性的要求及设计准则;毛坯的选择依据及常见零件毛坯选择;零件定位基准、	线下	讲授		目标 3

周次	教学主题	授课教师	学时 数	教学内容(重点、难点、课程思政融入点)	教学模式 线下/混合式	教学方 法	作业安排	支撑课 程目标
				工艺路线等确定的原则及选择;工序尺寸链的基本概念、计算 难点: 加工基准的选择、工艺尺寸链计算及工艺 路线的制订。				
17	机械加工工艺规 程的设计	张玉勋	3	重点:工序尺寸链的基本概念、计算;提高机械加工生产率的工艺措施、工艺方案经济性分析办法;典型零件的加工工艺。 难点:工艺尺寸链计算及工艺路线的制订。	线下	讲授/ 案例分 析		目标 3
18	机器装配工艺	张玉勋	3	重点: 机器装配概念、装配组织形式、产品结构装配工艺性。 难点: 装配尺寸链的计算。	线下	讲授/ 案例分 析		目标 3
合计			44					

实践教学进程表

周次	周次 实验项目名称		学时	 教学内容(重点、难点、课程思政融入点)	项目类型(验证/综合	教学	支撑课
月(八	│	授课教师	子叫	教子內谷(里点、难点、床住芯以融八点) 	/设计)	方式	程目标
6	实验 1. 刀具几何角度的 刃磨与测量	徐素武	2	刀具几何角度的刃磨与测量 课程思政融入点: 要求学生实验过程中坚持实事求实、严谨的科 学态度。	验证	教师演示,学 生独立实践完 成实验	目标 1
12	实验 2. 夹具结构拆装	徐素武	2	夹具的定位与夹紧机构分析	综合	教师演示,学	目标 3

			生独立实践完	
			成实验	
合计	4			

课程考核

r à 口		+ 1444. 11. = 1441. +	评价	依据及成绩	比例(%)		+rt € /a/\
序号 课程目标	支撑毕业要求指标点	作业	实验	期中考试	期末考试	权重(%)	
1	目标 1	1.3	5	5	10	15	35
2	目标 2	2.4	5		5	20	30
3	目标 3	3.2	5	5		20	30
4	目标 4	10.1	5				5
	合ì	t	20	10	15	55	100

注: (1) 考核环节应能支撑课程目标所述能力的达成; (2) 各类考核评价的具体评分标准见《附录: 各类考核评分标准表》.

备注: 1)根据《东莞理工学院考试管理规定》第十二条规定:旷课3次(或6课时)学生不得参加该课程的期终考核。2)各项考核标准见附件所示。

大纲编写时间: 2023年2月19日

系(部)审查意见:

系(部)主任签名:

日期: 年 月 日

附录: 各类考核评分标准表(仅供参考)

作业评分标准

教学目标要求	观测点		评分标准			权重
教子口你安 水	% ////////////////////////////////////	A (90–100)	B (80-89)	C (60-79)	D (0-59)	(100%)
目标1 能够运用金属切削过程的基本知识、 原理和计算方法等知识对机械制造过 程中的现象进行表述、解释和分析, 以及将这些知识应用于制造过程的工 艺设计,相关设备、工装的结构布局 与设计、机电系统控制手段及改进等; (支撑毕业要求指标点1.3)	应用知识对基本过程、现象进行解释、计算和分析的合理性,计算正确性。	能熟练正确运用相关知识 对金属切削的基本过程、现 象进行解释、计算,解题思 路和方案合理,计算正确	能正确运用相关知识对 金属切削的基本过程、 现象进行解释、计算, 解题思路和方案较为合 理,计算正确。	基本能正确运用相关知识对金属切削的基本过程、现象进行解释、计算,解题思路和方案基本合理,计算基本正确。	不交作业或作业,解答中概念、方案及解题存在严重错误。	25
目标 2 能够根据零件加工要求及现有条件, 借助文献研究,综合分析一般机械加 工方法和刀具的特点及其局限性,合 理选用加工机床及刀具;能够利用机 械加工精度、表面质量的基本知识, 借助文献研究,通过现象分析获得影	对比分析零件加工要求及现有条件的合理程度,结合文献研究,所选用刀具、机床等工具的正确性。	能熟练正确运用相关知识 和文献研究,合理对比分析 零件加工要求及现有条件, 正确所选用刀具、机床等工 具。	能正确运用相关知识和 文献研究,较为合理对 比分析零件加工要求及 现有条件,较为正确所 选用刀具、机床等工具。	基本能正确运用相关知识和文献研究,基本合理对比分析零件加工要求及现有条件,基本正确所选用刀具、机床等工具。	不交作业或作业,解答中概念、方案及解题存在严重错误。	12.5
响零件机械加工质量的关键因素,提 出提高机械加工质量的工艺措施。	对零件加工质 量影响因素分	能熟练正确运用相关知识, 对零件加工质量影响因素	能正确运用相关知识, 对零件加工质量影响因	能基本正确运用相关知识,对零件加工质量影响	不交作业或作 业,解答中概	12.5

(支撑毕业要求指标点 2.4)	析的合理性,所	分析合理,所提工艺措施正	素分析较为合理,所提	因素分析基本合理,所提	念、方案及解	
	提工艺措施的	确。	工艺措施较为正确。	工艺措施基本正确。	题存在严重错	
	正确性;				误。	
目标 3	根据零件加工	 能合理分析零件加工需求,	能较为合理分析零件加	能基本合理分析零件加	不交作业或作	
能够利用机床夹具设计的基本原理、	要求,判别分析	能音達力机零件加工需求,	工需求,正确运用相关	工需求,基本正确运用相	业,解答中概	
定位误差计算等工程知识,根据不同	夹具设计合性		知识分析夹具设计的正	关知识分析夹具设计的	念、方案及解	12.5
零件加工要求设计出具有效率和成本	的正确程度,所	析夹具设计的正确性及存	确性及存在的问题,所	正确性及存在的问题,所	题存在严重错	12.5
意识的夹具, 能够在设计环节中体现	提夹具设计方	在的问题,所提夹具设计方	提夹具设计方案较为合	提夹具设计方案基本合	误。	
创新意识; 能够利用零件和装配体工	案的合理性	案合理。	理。	理。		
艺路线拟订的基本知识、原则及加工	根据零件或装					12.5
工艺规程编制的一般方法等相关工程	配体使用加工		坐工來与田和光 加田	坐井	不	
知识,针对不同零件(装配体)及其	要求,判别分析	能熟练正确运用相关知识,	能正确运用相关知识,	能基本正确运用相关知	不交作业或作	
结构特点而设计出恰当的加工路线、	夹产品工艺合	对零件或装配体的加工质	对零件或装配体的加工	识,对零件或装配体的加工。	业,解答中概	
制定出具有效率与成本意识的、满足	理性,所计算结	量影响因素分析合理,所提	质量影响因素分析较为	工质量影响因素分析较	念、方案及解	
工艺逻辑思维的、并符合法律法规要	果和工艺路线	工艺措施正确。	合理,所提工艺措施较	为基本合理,所提工艺措	题存在严重错	
求的制造工艺及生产流程。	的正确和可执		为正确。	施基本正确。	误。	
(支撑毕业要求指标点 3.2)	行性					
目标 4: 能够就机械制造相关问题进					陈述的逻辑	12.5
行陈述发言,清晰表达研究或设计的		陈述的逻辑性强问题表	陈述的逻辑性较强	陈述的逻辑性尚可问	性不足问题	
具体思想、思路、方案、所采取的措	PPT 讲解		问题表达较清晰结	题表达基本清晰结论	表达不够清	
施和效果等,并能与业界同行及社会		达清晰结论准确适当	论适当	基本适当	晰结论不当	
公众进行有效沟通和交流.					或没有结论	

(支撑毕业要求指标点 10.1)					回答问题不	12.5
		回答问题正确	回答问题正确	回答问题基本正确	够正确	
	提问交流	能够说服对方接受自己	基本能够说服对方	基本能够说服对方认	无法说服对	
		的观点	认可自己的观点	可自己的观点	方接受自己	
					的观点	

实验评分标准

教学目标要求	评分标准				
双子口你安 本	A (90–100)	B (80-89)	C (60-79)	D (0-59)	(100%)
目标1 能够运用金属切削过程的基本知识、原理和计算方法等知识对机械制造过程中的现象进行表述、解释和分析,以及将这些知识应用于制造过程的工艺设计,相关设备、工装的结构布局与设计、机电系统控制手段及改进等; (支撑毕业要求指标点1.3)	能按照要求熟练准确操 作、获得有效数据、进行 正确的数据分析与相应 曲线绘制、指出数据的提 示及实验的可能改进,撰 写出规范的实验报告。	能按照要求较为准确操作、获得较为有效数据、进行较为正确的数据分析与相应曲线绘制、指出数据的提示及实验的可能改进,撰写出规范的实验报告。	能按照要求基本准确操作、获 得基本有效数据、进行基本正 确的数据分析与相应曲线绘 制、指出数据的提示及实验的 可能改进,撰写出基本规范的 实验报告。	不能按照要求操作,实验态度马虎,实验数据不完整或不正确,不能进行有效的数据分析,实验报告敷衍了事。	50
目标3 能够利用机床夹具设计的基本原理、定位误差 计算等工程知识,根据不同零件加工要求设计 出具有效率和成本意识的夹具,能够在设计环 节中体现创新意识;能够利用零件和装配体工 艺路线拟订的基本知识、原则及加工工艺规程 编制的一般方法等相关工程知识,针对不同零	能按照要求熟练准确操 作、获得有效数据、进行 正确的数据分析与相应 曲线绘制、指出数据的提 示及实验的可能改进,撰 写出规范的实验报告。	能按照要求较为准确操作、获得较为有效数据、进行较为正确的数据分析与相应曲线绘制、指出数据的提示及实验的可能改进,撰写出规范的实验报告。	能按照要求基本准确操作、获 得基本有效数据、进行基本正 确的数据分析与相应曲线绘 制、指出数据的提示及实验的 可能改进,撰写出基本规范的 实验报告。	不能按照要求操作,实验态度马虎,实验数据不完整或不正确,不能进行有效的数据分析,实验报告敷衍了事。	50

件(装配体)及其结构特点而设计出恰当的加			
工路线、制定出具有效率与成本意识的、满足			
工艺逻辑思维的、并符合法律法规要求的制造			
工艺及生产流程。			
(支撑毕业要求指标点 3.2)			

课堂测验(含期中考试)评分标准

按课堂测验(线上)、期中考试试卷参考答案及评分标准评分。

期末考试评分标准

按期末考试试卷参考答案及评分标准评分。