张良伟
副教授,硕士研究生导师,工业工程系主任
中国系统工程学会系统可靠性工程专业委员会委员、中国振动工程学会动态测试专业委员会委员、中国机械工程学会可靠性工程分会委员、IEEE高级会员、EI收录期刊International Journal of Reliability and Safety编委、美国项目管理协会(Project Management Institute, PMI)认证项目管理专家(Project Management Professional, PMP®)、东莞市特色人才
办公地点:松山湖校区12B401-1
邮箱:liangwei.zhang@dgut.edu.cn
教育背景/经历 Education:
2017.01, Luleå University of Technology, Sweden, Ph.D. in Operation and Maintenance Engineering
2015.06, Luleå University of Technology, Sweden, Lic. in Operation and Maintenance Engineering
2009.07, Nanjing University of Science and Technology, China, M.Sc. in Management Science and Engineering
工作经历 Work Experience:
2017.04 至今,东莞理工学院,教师
2018.07-2019.12,Luleå University of Technology, Sweden, 土木、环境与自然资源工程学院运营与维修工程系, 兼职讲师
2009.07-2013.06,瑞典斯凯孚(SKF中国),系统可靠性设备资产管理部,咨询师
科研情况 Scientific:
主要研究方向包括故障预测与健康管理、异常检测、机器学习、e维修等,主持2项国家自然科学基金项目、1项省级项目、1项省教育厅创新强校项目;参与3项国家自然科学基金项目、2项国家重点研发项目、2项省级项目,部分项目如下:
1. 2025.01-2028.12,国家自然科学基金面上项目,72471060,在研,主持;
2. 2022.10-2025.09,广东省基础与应用基础研究基金(区域联合基金-地区培育项目),2022A1515140035,在研,主持;
3. 2019.01-2021.12,国家自然科学基金青年基金项目,71801045,已结题,主持;
4. 2018.01-2019.12,广东省教育厅高等学校“创新强校工程”青年人才项目,2017KQNCX191,已结题,主持;
5. 2006-2010,国防“十一五”计划课题——“XXX快速响应制造”,已结题,参与。
第一/通讯作者论文(节选):
1. Zhang, L., Lin, J*., Yang, Z., Shao, H., Liu, B., & Li, C. (2024). Wave-ConvNeXt: An Efficient and Precise Fault Diagnosis Method for IIoT Leveraging Tailored ConvNeXt and Wavelet Transform. IEEE Internet of Things Journal, 11(13), 23096-23109 (SCI收录,影响因子10.6)
2. Zhang, L., Lin, J*., Shao, H., Yang, Z., Liu, B., & Li, C. (2024). An unsupervised end-to-end approach to fault detection in delta 3D printers using deep support vector data description. Journal of manufacturing systems, 72, 214-228. (SCI收录,影响因子12.1)
3. Zhang, L., Fan, Q.*, Lin, J., Zhang, Z., Yan, X., & Li, C. (2023). A nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes under nonstationary conditions. Engineering applications of artificial intelligence, 119, 105735. (SCI收录,影响因子8)
4. Zhang, L., Zhang, J., Peng, Y., & Lin, J.* (2022). Intra-Domain Transfer Learning for Fault Diagnosis with Small Samples. Applied Sciences, 12(14), 7032. (SCI收录,影响因子2.7)
5. Shao, H., Lin, J., Zhang, L*., Galar, D., & Kumar, U. (2021). A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance. Information Fusion, 74, 65-76. (SCI收录,影响因子18.6)
6. Zhang, L., Lin, J*., Shao, H., Zhang, Z., Yan, X., & Long, J. (2021). End-to-end unsupervised fault detection using a flow-based model. Reliability Engineering & System Safety, 215, 107805. (SCI收录,影响因子8.1)
7. Long, J., Mou, J., Zhang, L.*, Zhang, S., & Li, C. (2021). Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots. Journal of manufacturing systems, 61, 736-745. (SCI收录,影响因子12.1)
8. Zhang, L., Lin, J., Liu, B*., Zhang, Z., Yan, X., & Wei, M. (2019). A review on deep learning applications in prognostics and health management. IEEE Access, 7, 162415-162438. (SCI收录,影响因子3.9).
9. Zhang, L.*, Lin, J., & Karim, R. (2018). Adaptive kernel density-based anomaly detection for nonlinear systems. Knowledge-Based Systems, 139, 50-63. (SCI收录,影响因子8.8)
10. Zhang, L.*, Lin, J., & Karim, R. (2017). Sliding window-based fault detection from high-dimensional data streams. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2), 289-303. (SCI收录,影响因子8.7)
11. Zhang, L.*, Lin, J., & Karim, R. (2015). An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection. Reliability Engineering & System Safety, 142, 482-497. (SCI收录,影响因子8.1)
教学相关 Teaching:
主讲课程包括:《应用统计学》(双语)、《机器学习及其工业应用》、《精益生产》、《精益生产实践》等。多次学生评教位列机械工程学院前3名,部分学生评教信息如下:
2024年春季,《应用统计学》,2022级工业工程专业本科生,排名第1;
2024年春季,《精益生产》,2021级工业工程专业本科生,排名第3;
2023年春季,《机器学习及其工业应用》,2021级工业工程专业本科生,排名第1;
2022年秋季,《应用统计学》,2020级工业工程专业本科生,排名第5;
2021年秋季,《应用统计学》,2019级工业工程专业本科生,排名第3;
2020年秋季,《应用统计学》,2018级工业工程专业本科生,排名第1;
2020年春季,《管理统计学》,2017级工业工程专业本科生,排名第2;
2019年春季,《管理统计学》,2016级工业工程专业本科生,排名第1;
主讲课程《应用统计学》获东莞理工学院2022年校级质量工程项目“校级线下一流课程”立项(教务[2023]14号),以第一作者发表教改论文1篇——“基于OBE理念的‘应用统计学’课程教学改革探索与实践”。
获奖情况 Awards:
2024年获东莞理工学院校级教学成果奖一等奖,“一中心、两认证、四模块、五环节、七平台”工业工程实践能力培养研究实践,排名第2;
2024年获东莞理工学院“优秀共产党员”称号;
2024年获东莞理工学院机械工程学院课程思政优秀教学案例二等奖;
2024年获The 2024 IEEE International Conference on Prognostics and Health Management (ICPHM 2024) Best Reviewer;
2024年作为第一指导老师指导学生参加第十七届“高教杯”全国大学生先进成图技术与产品信息建模创新大赛获二等奖;
2024年作为第一指导老师指导学生参加中国大学生机械工程创新创意大赛物流技术(起重机)创意赛(区域赛)获二等奖2项;
2023年联合中国散裂中子源申报广东省仪器仪表学会科学技术奖,获一等奖(排名第8);
2023年指导学生参加第五届广东省暨粤港澳大湾区工业工程创新大赛(广东省机械工程学会工业工程分会主办)获二等奖;
2023年指导学生参加工业工程类专业优秀课程设计展示活动(教育部高等学校工业工程教指委主办)获优秀等次(最高等次);
2023年第四届东莞理工学院教学创新大赛职称组(个人),三等奖;
2022年获东莞理工学院校级教学成果奖一等奖,现代产业学院知识协同再生产课程开发模式创新实践,排名第8;
2018-2019学年获东莞理工学院“优秀教师”称号;
2018年度东莞理工学院青年教师教学技能竞赛(工科组第一名),一等奖;
2017-2018学年东莞理工学院机械工程学院教师教学技能竞赛,二等奖;